/* * Copyright (c) 2021 Arm Limited. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Mfcc.hpp" #include "PlatformMath.hpp" #include namespace arm { namespace app { namespace audio { MfccParams::MfccParams( const float samplingFreq, const uint32_t numFbankBins, const float melLoFreq, const float melHiFreq, const uint32_t numMfccFeats, const uint32_t frameLen, const bool useHtkMethod): m_samplingFreq(samplingFreq), m_numFbankBins(numFbankBins), m_melLoFreq(melLoFreq), m_melHiFreq(melHiFreq), m_numMfccFeatures(numMfccFeats), m_frameLen(frameLen), /* Smallest power of 2 >= frame length. */ m_frameLenPadded(pow(2, ceil((log(frameLen)/log(2))))), m_useHtkMethod(useHtkMethod) {} std::string MfccParams::Str() { char strC[1024]; snprintf(strC, sizeof(strC) - 1, "\n \ \n\t Sampling frequency: %f\ \n\t Number of filter banks: %u\ \n\t Mel frequency limit (low): %f\ \n\t Mel frequency limit (high): %f\ \n\t Number of MFCC features: %u\ \n\t Frame length: %u\ \n\t Padded frame length: %u\ \n\t Using HTK for Mel scale: %s\n", this->m_samplingFreq, this->m_numFbankBins, this->m_melLoFreq, this->m_melHiFreq, this->m_numMfccFeatures, this->m_frameLen, this->m_frameLenPadded, this->m_useHtkMethod ? "yes" : "no"); return std::string{strC}; } MFCC::MFCC(const MfccParams& params): _m_params(params), _m_filterBankInitialised(false) { this->_m_buffer = std::vector( this->_m_params.m_frameLenPadded, 0.0); this->_m_frame = std::vector( this->_m_params.m_frameLenPadded, 0.0); this->_m_melEnergies = std::vector( this->_m_params.m_numFbankBins, 0.0); this->_m_windowFunc = std::vector(this->_m_params.m_frameLen); const float multiplier = 2 * M_PI / this->_m_params.m_frameLen; /* Create window function. */ for (size_t i = 0; i < this->_m_params.m_frameLen; i++) { this->_m_windowFunc[i] = (0.5 - (0.5 * math::MathUtils::CosineF32(static_cast(i) * multiplier))); } math::MathUtils::FftInitF32(this->_m_params.m_frameLenPadded, this->_m_fftInstance); debug("Instantiated MFCC object: %s\n", this->_m_params.Str().c_str()); } void MFCC::Init() { this->_InitMelFilterBank(); } float MFCC::MelScale(const float freq, const bool useHTKMethod) { if (useHTKMethod) { return 1127.0f * logf (1.0f + freq / 700.0f); } else { /* Slaney formula for mel scale. */ float mel = freq / ms_freqStep; if (freq >= ms_minLogHz) { mel = ms_minLogMel + logf(freq / ms_minLogHz) / ms_logStep; } return mel; } } float MFCC::InverseMelScale(const float melFreq, const bool useHTKMethod) { if (useHTKMethod) { return 700.0f * (expf (melFreq / 1127.0f) - 1.0f); } else { /* Slaney formula for mel scale. */ float freq = ms_freqStep * melFreq; if (melFreq >= ms_minLogMel) { freq = ms_minLogHz * expf(ms_logStep * (melFreq - ms_minLogMel)); } return freq; } } bool MFCC::ApplyMelFilterBank( std::vector& fftVec, std::vector>& melFilterBank, std::vector& filterBankFilterFirst, std::vector& filterBankFilterLast, std::vector& melEnergies) { const size_t numBanks = melEnergies.size(); if (numBanks != filterBankFilterFirst.size() || numBanks != filterBankFilterLast.size()) { printf_err("unexpected filter bank lengths\n"); return false; } for (size_t bin = 0; bin < numBanks; ++bin) { auto filterBankIter = melFilterBank[bin].begin(); float melEnergy = FLT_MIN; /* Avoid log of zero at later stages */ int32_t firstIndex = filterBankFilterFirst[bin]; int32_t lastIndex = filterBankFilterLast[bin]; for (int i = firstIndex; i <= lastIndex; i++) { float energyRep = math::MathUtils::SqrtF32(fftVec[i]); melEnergy += (*filterBankIter++ * energyRep); } melEnergies[bin] = melEnergy; } return true; } void MFCC::ConvertToLogarithmicScale(std::vector& melEnergies) { for (size_t bin = 0; bin < melEnergies.size(); ++bin) { melEnergies[bin] = logf(melEnergies[bin]); } } void MFCC::_ConvertToPowerSpectrum() { const uint32_t halfDim = this->_m_params.m_frameLenPadded / 2; /* Handle this special case. */ float firstEnergy = this->_m_buffer[0] * this->_m_buffer[0]; float lastEnergy = this->_m_buffer[1] * this->_m_buffer[1]; math::MathUtils::ComplexMagnitudeSquaredF32( this->_m_buffer.data(), this->_m_buffer.size(), this->_m_buffer.data(), this->_m_buffer.size()/2); this->_m_buffer[0] = firstEnergy; this->_m_buffer[halfDim] = lastEnergy; } std::vector MFCC::CreateDCTMatrix( const int32_t inputLength, const int32_t coefficientCount) { std::vector dctMatix(inputLength * coefficientCount); const float normalizer = math::MathUtils::SqrtF32(2.0f/inputLength); const float angleIncr = M_PI/inputLength; float angle = 0; for (int32_t k = 0, m = 0; k < coefficientCount; k++, m += inputLength) { for (int32_t n = 0; n < inputLength; n++) { dctMatix[m+n] = normalizer * math::MathUtils::CosineF32((n + 0.5) * angle); } angle += angleIncr; } return dctMatix; } float MFCC::GetMelFilterBankNormaliser( const float& leftMel, const float& rightMel, const bool useHTKMethod) { UNUSED(leftMel); UNUSED(rightMel); UNUSED(useHTKMethod); /* By default, no normalisation => return 1 */ return 1.f; } void MFCC::_InitMelFilterBank() { if (!this->_IsMelFilterBankInited()) { this->_m_melFilterBank = this->_CreateMelFilterBank(); this->_m_dctMatrix = this->CreateDCTMatrix( this->_m_params.m_numFbankBins, this->_m_params.m_numMfccFeatures); this->_m_filterBankInitialised = true; } } bool MFCC::_IsMelFilterBankInited() { return this->_m_filterBankInitialised; } void MFCC::_MfccComputePreFeature(const std::vector& audioData) { this->_InitMelFilterBank(); /* TensorFlow way of normalizing .wav data to (-1, 1). */ constexpr float normaliser = 1.0/(1<<15); for (size_t i = 0; i < this->_m_params.m_frameLen; i++) { this->_m_frame[i] = static_cast(audioData[i]) * normaliser; } /* Apply window function to input frame. */ for(size_t i = 0; i < this->_m_params.m_frameLen; i++) { this->_m_frame[i] *= this->_m_windowFunc[i]; } /* Set remaining frame values to 0. */ std::fill(this->_m_frame.begin() + this->_m_params.m_frameLen,this->_m_frame.end(), 0); /* Compute FFT. */ math::MathUtils::FftF32(this->_m_frame, this->_m_buffer, this->_m_fftInstance); /* Convert to power spectrum. */ this->_ConvertToPowerSpectrum(); /* Apply mel filterbanks. */ if (!this->ApplyMelFilterBank(this->_m_buffer, this->_m_melFilterBank, this->_m_filterBankFilterFirst, this->_m_filterBankFilterLast, this->_m_melEnergies)) { printf_err("Failed to apply MEL filter banks\n"); } /* Convert to logarithmic scale. */ this->ConvertToLogarithmicScale(this->_m_melEnergies); } std::vector MFCC::MfccCompute(const std::vector& audioData) { this->_MfccComputePreFeature(audioData); std::vector mfccOut(this->_m_params.m_numMfccFeatures); float * ptrMel = this->_m_melEnergies.data(); float * ptrDct = this->_m_dctMatrix.data(); float * ptrMfcc = mfccOut.data(); /* Take DCT. Uses matrix mul. */ for (size_t i = 0, j = 0; i < mfccOut.size(); ++i, j += this->_m_params.m_numFbankBins) { *ptrMfcc++ = math::MathUtils::DotProductF32( ptrDct + j, ptrMel, this->_m_params.m_numFbankBins); } return mfccOut; } std::vector> MFCC::_CreateMelFilterBank() { size_t numFftBins = this->_m_params.m_frameLenPadded / 2; float fftBinWidth = static_cast(this->_m_params.m_samplingFreq) / this->_m_params.m_frameLenPadded; float melLowFreq = MFCC::MelScale(this->_m_params.m_melLoFreq, this->_m_params.m_useHtkMethod); float melHighFreq = MFCC::MelScale(this->_m_params.m_melHiFreq, this->_m_params.m_useHtkMethod); float melFreqDelta = (melHighFreq - melLowFreq) / (this->_m_params.m_numFbankBins + 1); std::vector thisBin = std::vector(numFftBins); std::vector> melFilterBank( this->_m_params.m_numFbankBins); this->_m_filterBankFilterFirst = std::vector(this->_m_params.m_numFbankBins); this->_m_filterBankFilterLast = std::vector(this->_m_params.m_numFbankBins); for (size_t bin = 0; bin < this->_m_params.m_numFbankBins; bin++) { float leftMel = melLowFreq + bin * melFreqDelta; float centerMel = melLowFreq + (bin + 1) * melFreqDelta; float rightMel = melLowFreq + (bin + 2) * melFreqDelta; int32_t firstIndex = -1; int32_t lastIndex = -1; const float normaliser = this->GetMelFilterBankNormaliser(leftMel, rightMel, this->_m_params.m_useHtkMethod); for (size_t i = 0; i < numFftBins; i++) { float freq = (fftBinWidth * i); /* Center freq of this fft bin. */ float mel = MFCC::MelScale(freq, this->_m_params.m_useHtkMethod); thisBin[i] = 0.0; if (mel > leftMel && mel < rightMel) { float weight; if (mel <= centerMel) { weight = (mel - leftMel) / (centerMel - leftMel); } else { weight = (rightMel - mel) / (rightMel - centerMel); } thisBin[i] = weight * normaliser; if (firstIndex == -1) { firstIndex = i; } lastIndex = i; } } this->_m_filterBankFilterFirst[bin] = firstIndex; this->_m_filterBankFilterLast[bin] = lastIndex; /* Copy the part we care about. */ for (int32_t i = firstIndex; i <= lastIndex; i++) { melFilterBank[bin].push_back(thisBin[i]); } } return melFilterBank; } } /* namespace audio */ } /* namespace app */ } /* namespace arm */