summaryrefslogtreecommitdiff
path: root/source/use_case/noise_reduction/src/RNNoiseFeatureProcessor.cc
diff options
context:
space:
mode:
Diffstat (limited to 'source/use_case/noise_reduction/src/RNNoiseFeatureProcessor.cc')
-rw-r--r--source/use_case/noise_reduction/src/RNNoiseFeatureProcessor.cc892
1 files changed, 892 insertions, 0 deletions
diff --git a/source/use_case/noise_reduction/src/RNNoiseFeatureProcessor.cc b/source/use_case/noise_reduction/src/RNNoiseFeatureProcessor.cc
new file mode 100644
index 0000000..036894c
--- /dev/null
+++ b/source/use_case/noise_reduction/src/RNNoiseFeatureProcessor.cc
@@ -0,0 +1,892 @@
+/*
+ * Copyright (c) 2021-2022 Arm Limited. All rights reserved.
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "RNNoiseFeatureProcessor.hpp"
+#include "log_macros.h"
+
+#include <algorithm>
+#include <cmath>
+#include <cstring>
+
+namespace arm {
+namespace app {
+namespace rnn {
+
+#define VERIFY(x) \
+do { \
+ if (!(x)) { \
+ printf_err("Assert failed:" #x "\n"); \
+ exit(1); \
+ } \
+} while(0)
+
+RNNoiseFeatureProcessor::RNNoiseFeatureProcessor() :
+ m_halfWindow(FRAME_SIZE, 0),
+ m_dctTable(NB_BANDS * NB_BANDS),
+ m_analysisMem(FRAME_SIZE, 0),
+ m_cepstralMem(CEPS_MEM, vec1D32F(NB_BANDS, 0)),
+ m_memId{0},
+ m_synthesisMem(FRAME_SIZE, 0),
+ m_pitchBuf(PITCH_BUF_SIZE, 0),
+ m_lastGain{0.0},
+ m_lastPeriod{0},
+ m_memHpX{},
+ m_lastGVec(NB_BANDS, 0)
+{
+ constexpr uint32_t numFFt = 2 * FRAME_SIZE;
+ static_assert(numFFt != 0, "Num FFT can't be 0");
+
+ math::MathUtils::FftInitF32(numFFt, this->m_fftInstReal, FftType::real);
+ math::MathUtils::FftInitF32(numFFt, this->m_fftInstCmplx, FftType::complex);
+ this->InitTables();
+}
+
+void RNNoiseFeatureProcessor::PreprocessFrame(const float* audioData,
+ const size_t audioLen,
+ FrameFeatures& features)
+{
+ /* Note audioWindow is modified in place */
+ const arrHp aHp {-1.99599, 0.99600 };
+ const arrHp bHp {-2.00000, 1.00000 };
+
+ vec1D32F audioWindow{audioData, audioData + audioLen};
+
+ this->BiQuad(bHp, aHp, this->m_memHpX, audioWindow);
+ this->ComputeFrameFeatures(audioWindow, features);
+}
+
+void RNNoiseFeatureProcessor::PostProcessFrame(vec1D32F& modelOutput, FrameFeatures& features, vec1D32F& outFrame)
+{
+ std::vector<float> outputBands = modelOutput;
+ std::vector<float> gain(FREQ_SIZE, 0);
+
+ if (!features.m_silence) {
+ PitchFilter(features, outputBands);
+ for (size_t i = 0; i < NB_BANDS; i++) {
+ float alpha = .6f;
+ outputBands[i] = std::max(outputBands[i], alpha * m_lastGVec[i]);
+ m_lastGVec[i] = outputBands[i];
+ }
+ InterpBandGain(gain, outputBands);
+ for (size_t i = 0; i < FREQ_SIZE; i++) {
+ features.m_fftX[2 * i] *= gain[i]; /* Real. */
+ features.m_fftX[2 * i + 1] *= gain[i]; /*imaginary. */
+
+ }
+
+ }
+
+ FrameSynthesis(outFrame, features.m_fftX);
+}
+
+void RNNoiseFeatureProcessor::InitTables()
+{
+ constexpr float pi = M_PI;
+ constexpr float halfPi = M_PI / 2;
+ constexpr float halfPiOverFrameSz = halfPi/FRAME_SIZE;
+
+ for (uint32_t i = 0; i < FRAME_SIZE; i++) {
+ const float sinVal = math::MathUtils::SineF32(halfPiOverFrameSz * (i + 0.5f));
+ m_halfWindow[i] = math::MathUtils::SineF32(halfPi * sinVal * sinVal);
+ }
+
+ for (uint32_t i = 0; i < NB_BANDS; i++) {
+ for (uint32_t j = 0; j < NB_BANDS; j++) {
+ m_dctTable[i * NB_BANDS + j] = math::MathUtils::CosineF32((i + 0.5f) * j * pi / NB_BANDS);
+ }
+ m_dctTable[i * NB_BANDS] *= math::MathUtils::SqrtF32(0.5f);
+ }
+}
+
+void RNNoiseFeatureProcessor::BiQuad(
+ const arrHp& bHp,
+ const arrHp& aHp,
+ arrHp& memHpX,
+ vec1D32F& audioWindow)
+{
+ for (float& audioElement : audioWindow) {
+ const auto xi = audioElement;
+ const auto yi = audioElement + memHpX[0];
+ memHpX[0] = memHpX[1] + (bHp[0] * xi - aHp[0] * yi);
+ memHpX[1] = (bHp[1] * xi - aHp[1] * yi);
+ audioElement = yi;
+ }
+}
+
+void RNNoiseFeatureProcessor::ComputeFrameFeatures(vec1D32F& audioWindow,
+ FrameFeatures& features)
+{
+ this->FrameAnalysis(audioWindow,
+ features.m_fftX,
+ features.m_Ex,
+ this->m_analysisMem);
+
+ float energy = 0.0;
+
+ vec1D32F Ly(NB_BANDS, 0);
+ vec1D32F p(WINDOW_SIZE, 0);
+ vec1D32F pitchBuf(PITCH_BUF_SIZE >> 1, 0);
+
+ VERIFY(PITCH_BUF_SIZE >= this->m_pitchBuf.size());
+ std::copy_n(this->m_pitchBuf.begin() + FRAME_SIZE,
+ PITCH_BUF_SIZE - FRAME_SIZE,
+ this->m_pitchBuf.begin());
+
+ VERIFY(FRAME_SIZE <= audioWindow.size() && PITCH_BUF_SIZE > FRAME_SIZE);
+ std::copy_n(audioWindow.begin(),
+ FRAME_SIZE,
+ this->m_pitchBuf.begin() + PITCH_BUF_SIZE - FRAME_SIZE);
+
+ this->PitchDownsample(pitchBuf, PITCH_BUF_SIZE);
+
+ VERIFY(pitchBuf.size() > PITCH_MAX_PERIOD/2);
+ vec1D32F xLp(pitchBuf.size() - PITCH_MAX_PERIOD/2, 0);
+ std::copy_n(pitchBuf.begin() + PITCH_MAX_PERIOD/2, xLp.size(), xLp.begin());
+
+ int pitchIdx = this->PitchSearch(xLp, pitchBuf,
+ PITCH_FRAME_SIZE, (PITCH_MAX_PERIOD - (3*PITCH_MIN_PERIOD)));
+
+ pitchIdx = this->RemoveDoubling(
+ pitchBuf,
+ PITCH_MAX_PERIOD,
+ PITCH_MIN_PERIOD,
+ PITCH_FRAME_SIZE,
+ PITCH_MAX_PERIOD - pitchIdx);
+
+ size_t stIdx = PITCH_BUF_SIZE - WINDOW_SIZE - pitchIdx;
+ VERIFY((static_cast<int>(PITCH_BUF_SIZE) - static_cast<int>(WINDOW_SIZE) - pitchIdx) >= 0);
+ std::copy_n(this->m_pitchBuf.begin() + stIdx, WINDOW_SIZE, p.begin());
+
+ this->ApplyWindow(p);
+ this->ForwardTransform(p, features.m_fftP);
+ this->ComputeBandEnergy(features.m_fftP, features.m_Ep);
+ this->ComputeBandCorr(features.m_fftX, features.m_fftP, features.m_Exp);
+
+ for (uint32_t i = 0 ; i < NB_BANDS; ++i) {
+ features.m_Exp[i] /= math::MathUtils::SqrtF32(
+ 0.001f + features.m_Ex[i] * features.m_Ep[i]);
+ }
+
+ vec1D32F dctVec(NB_BANDS, 0);
+ this->DCT(features.m_Exp, dctVec);
+
+ features.m_featuresVec = vec1D32F (NB_FEATURES, 0);
+ for (uint32_t i = 0; i < NB_DELTA_CEPS; ++i) {
+ features.m_featuresVec[NB_BANDS + 2*NB_DELTA_CEPS + i] = dctVec[i];
+ }
+
+ features.m_featuresVec[NB_BANDS + 2*NB_DELTA_CEPS] -= 1.3;
+ features.m_featuresVec[NB_BANDS + 2*NB_DELTA_CEPS + 1] -= 0.9;
+ features.m_featuresVec[NB_BANDS + 3*NB_DELTA_CEPS] = 0.01 * (static_cast<int>(pitchIdx) - 300);
+
+ float logMax = -2.f;
+ float follow = -2.f;
+ for (uint32_t i = 0; i < NB_BANDS; ++i) {
+ Ly[i] = log10f(1e-2f + features.m_Ex[i]);
+ Ly[i] = std::max<float>(logMax - 7, std::max<float>(follow - 1.5, Ly[i]));
+ logMax = std::max<float>(logMax, Ly[i]);
+ follow = std::max<float>(follow - 1.5, Ly[i]);
+ energy += features.m_Ex[i];
+ }
+
+ /* If there's no audio avoid messing up the state. */
+ features.m_silence = true;
+ if (energy < 0.04) {
+ return;
+ } else {
+ features.m_silence = false;
+ }
+
+ this->DCT(Ly, features.m_featuresVec);
+ features.m_featuresVec[0] -= 12.0;
+ features.m_featuresVec[1] -= 4.0;
+
+ VERIFY(CEPS_MEM > 2);
+ uint32_t stIdx1 = this->m_memId < 1 ? CEPS_MEM + this->m_memId - 1 : this->m_memId - 1;
+ uint32_t stIdx2 = this->m_memId < 2 ? CEPS_MEM + this->m_memId - 2 : this->m_memId - 2;
+ VERIFY(stIdx1 < this->m_cepstralMem.size());
+ VERIFY(stIdx2 < this->m_cepstralMem.size());
+ auto ceps1 = this->m_cepstralMem[stIdx1];
+ auto ceps2 = this->m_cepstralMem[stIdx2];
+
+ /* Ceps 0 */
+ for (uint32_t i = 0; i < NB_BANDS; ++i) {
+ this->m_cepstralMem[this->m_memId][i] = features.m_featuresVec[i];
+ }
+
+ for (uint32_t i = 0; i < NB_DELTA_CEPS; ++i) {
+ features.m_featuresVec[i] = this->m_cepstralMem[this->m_memId][i] + ceps1[i] + ceps2[i];
+ features.m_featuresVec[NB_BANDS + i] = this->m_cepstralMem[this->m_memId][i] - ceps2[i];
+ features.m_featuresVec[NB_BANDS + NB_DELTA_CEPS + i] =
+ this->m_cepstralMem[this->m_memId][i] - 2 * ceps1[i] + ceps2[i];
+ }
+
+ /* Spectral variability features. */
+ this->m_memId += 1;
+ if (this->m_memId == CEPS_MEM) {
+ this->m_memId = 0;
+ }
+
+ float specVariability = 0.f;
+
+ VERIFY(this->m_cepstralMem.size() >= CEPS_MEM);
+ for (size_t i = 0; i < CEPS_MEM; ++i) {
+ float minDist = 1e15;
+ for (size_t j = 0; j < CEPS_MEM; ++j) {
+ float dist = 0.f;
+ for (size_t k = 0; k < NB_BANDS; ++k) {
+ VERIFY(this->m_cepstralMem[i].size() >= NB_BANDS);
+ auto tmp = this->m_cepstralMem[i][k] - this->m_cepstralMem[j][k];
+ dist += tmp * tmp;
+ }
+
+ if (j != i) {
+ minDist = std::min<float>(minDist, dist);
+ }
+ }
+ specVariability += minDist;
+ }
+
+ VERIFY(features.m_featuresVec.size() >= NB_BANDS + 3 * NB_DELTA_CEPS + 1);
+ features.m_featuresVec[NB_BANDS + 3 * NB_DELTA_CEPS + 1] = specVariability / CEPS_MEM - 2.1;
+}
+
+void RNNoiseFeatureProcessor::FrameAnalysis(
+ const vec1D32F& audioWindow,
+ vec1D32F& fft,
+ vec1D32F& energy,
+ vec1D32F& analysisMem)
+{
+ vec1D32F x(WINDOW_SIZE, 0);
+
+ /* Move old audio down and populate end with latest audio window. */
+ VERIFY(x.size() >= FRAME_SIZE && analysisMem.size() >= FRAME_SIZE);
+ VERIFY(audioWindow.size() >= FRAME_SIZE);
+
+ std::copy_n(analysisMem.begin(), FRAME_SIZE, x.begin());
+ std::copy_n(audioWindow.begin(), x.size() - FRAME_SIZE, x.begin() + FRAME_SIZE);
+ std::copy_n(audioWindow.begin(), FRAME_SIZE, analysisMem.begin());
+
+ this->ApplyWindow(x);
+
+ /* Calculate FFT. */
+ ForwardTransform(x, fft);
+
+ /* Compute band energy. */
+ ComputeBandEnergy(fft, energy);
+}
+
+void RNNoiseFeatureProcessor::ApplyWindow(vec1D32F& x)
+{
+ if (WINDOW_SIZE != x.size()) {
+ printf_err("Invalid size for vector to be windowed\n");
+ return;
+ }
+
+ VERIFY(this->m_halfWindow.size() >= FRAME_SIZE);
+
+ /* Multiply input by sinusoidal function. */
+ for (size_t i = 0; i < FRAME_SIZE; i++) {
+ x[i] *= this->m_halfWindow[i];
+ x[WINDOW_SIZE - 1 - i] *= this->m_halfWindow[i];
+ }
+}
+
+void RNNoiseFeatureProcessor::ForwardTransform(
+ vec1D32F& x,
+ vec1D32F& fft)
+{
+ /* The input vector can be modified by the fft function. */
+ fft.reserve(x.size() + 2);
+ fft.resize(x.size() + 2, 0);
+ math::MathUtils::FftF32(x, fft, this->m_fftInstReal);
+
+ /* Normalise. */
+ for (auto& f : fft) {
+ f /= this->m_fftInstReal.m_fftLen;
+ }
+
+ /* Place the last freq element correctly */
+ fft[fft.size()-2] = fft[1];
+ fft[1] = 0;
+
+ /* NOTE: We don't truncate out FFT vector as it already contains only the
+ * first half of the FFT's. The conjugates are not present. */
+}
+
+void RNNoiseFeatureProcessor::ComputeBandEnergy(const vec1D32F& fftX, vec1D32F& bandE)
+{
+ bandE = vec1D32F(NB_BANDS, 0);
+
+ VERIFY(this->m_eband5ms.size() >= NB_BANDS);
+ for (uint32_t i = 0; i < NB_BANDS - 1; i++) {
+ const auto bandSize = (this->m_eband5ms[i + 1] - this->m_eband5ms[i])
+ << FRAME_SIZE_SHIFT;
+
+ for (uint32_t j = 0; j < bandSize; j++) {
+ const auto frac = static_cast<float>(j) / bandSize;
+ const auto idx = (this->m_eband5ms[i] << FRAME_SIZE_SHIFT) + j;
+
+ auto tmp = fftX[2 * idx] * fftX[2 * idx]; /* Real part */
+ tmp += fftX[2 * idx + 1] * fftX[2 * idx + 1]; /* Imaginary part */
+
+ bandE[i] += (1 - frac) * tmp;
+ bandE[i + 1] += frac * tmp;
+ }
+ }
+ bandE[0] *= 2;
+ bandE[NB_BANDS - 1] *= 2;
+}
+
+void RNNoiseFeatureProcessor::ComputeBandCorr(const vec1D32F& X, const vec1D32F& P, vec1D32F& bandC)
+{
+ bandC = vec1D32F(NB_BANDS, 0);
+ VERIFY(this->m_eband5ms.size() >= NB_BANDS);
+
+ for (uint32_t i = 0; i < NB_BANDS - 1; i++) {
+ const auto bandSize = (this->m_eband5ms[i + 1] - this->m_eband5ms[i]) << FRAME_SIZE_SHIFT;
+
+ for (uint32_t j = 0; j < bandSize; j++) {
+ const auto frac = static_cast<float>(j) / bandSize;
+ const auto idx = (this->m_eband5ms[i] << FRAME_SIZE_SHIFT) + j;
+
+ auto tmp = X[2 * idx] * P[2 * idx]; /* Real part */
+ tmp += X[2 * idx + 1] * P[2 * idx + 1]; /* Imaginary part */
+
+ bandC[i] += (1 - frac) * tmp;
+ bandC[i + 1] += frac * tmp;
+ }
+ }
+ bandC[0] *= 2;
+ bandC[NB_BANDS - 1] *= 2;
+}
+
+void RNNoiseFeatureProcessor::DCT(vec1D32F& input, vec1D32F& output)
+{
+ VERIFY(this->m_dctTable.size() >= NB_BANDS * NB_BANDS);
+ for (uint32_t i = 0; i < NB_BANDS; ++i) {
+ float sum = 0;
+
+ for (uint32_t j = 0, k = 0; j < NB_BANDS; ++j, k += NB_BANDS) {
+ sum += input[j] * this->m_dctTable[k + i];
+ }
+ output[i] = sum * math::MathUtils::SqrtF32(2.0/22);
+ }
+}
+
+void RNNoiseFeatureProcessor::PitchDownsample(vec1D32F& pitchBuf, size_t pitchBufSz) {
+ for (size_t i = 1; i < (pitchBufSz >> 1); ++i) {
+ pitchBuf[i] = 0.5 * (
+ 0.5 * (this->m_pitchBuf[2 * i - 1] + this->m_pitchBuf[2 * i + 1])
+ + this->m_pitchBuf[2 * i]);
+ }
+
+ pitchBuf[0] = 0.5*(0.5*(this->m_pitchBuf[1]) + this->m_pitchBuf[0]);
+
+ vec1D32F ac(5, 0);
+ size_t numLags = 4;
+
+ this->AutoCorr(pitchBuf, ac, numLags, pitchBufSz >> 1);
+
+ /* Noise floor -40db */
+ ac[0] *= 1.0001;
+
+ /* Lag windowing. */
+ for (size_t i = 1; i < numLags + 1; ++i) {
+ ac[i] -= ac[i] * (0.008 * i) * (0.008 * i);
+ }
+
+ vec1D32F lpc(numLags, 0);
+ this->LPC(ac, numLags, lpc);
+
+ float tmp = 1.0;
+ for (size_t i = 0; i < numLags; ++i) {
+ tmp = 0.9f * tmp;
+ lpc[i] = lpc[i] * tmp;
+ }
+
+ vec1D32F lpc2(numLags + 1, 0);
+ float c1 = 0.8;
+
+ /* Add a zero. */
+ lpc2[0] = lpc[0] + 0.8;
+ lpc2[1] = lpc[1] + (c1 * lpc[0]);
+ lpc2[2] = lpc[2] + (c1 * lpc[1]);
+ lpc2[3] = lpc[3] + (c1 * lpc[2]);
+ lpc2[4] = (c1 * lpc[3]);
+
+ this->Fir5(lpc2, pitchBufSz >> 1, pitchBuf);
+}
+
+int RNNoiseFeatureProcessor::PitchSearch(vec1D32F& xLp, vec1D32F& y, uint32_t len, uint32_t maxPitch) {
+ uint32_t lag = len + maxPitch;
+ vec1D32F xLp4(len >> 2, 0);
+ vec1D32F yLp4(lag >> 2, 0);
+ vec1D32F xCorr(maxPitch >> 1, 0);
+
+ /* Downsample by 2 again. */
+ for (size_t j = 0; j < (len >> 2); ++j) {
+ xLp4[j] = xLp[2*j];
+ }
+ for (size_t j = 0; j < (lag >> 2); ++j) {
+ yLp4[j] = y[2*j];
+ }
+
+ this->PitchXCorr(xLp4, yLp4, xCorr, len >> 2, maxPitch >> 2);
+
+ /* Coarse search with 4x decimation. */
+ arrHp bestPitch = this->FindBestPitch(xCorr, yLp4, len >> 2, maxPitch >> 2);
+
+ /* Finer search with 2x decimation. */
+ const int maxIdx = (maxPitch >> 1);
+ for (int i = 0; i < maxIdx; ++i) {
+ xCorr[i] = 0;
+ if (std::abs(i - 2*bestPitch[0]) > 2 and std::abs(i - 2*bestPitch[1]) > 2) {
+ continue;
+ }
+ float sum = 0;
+ for (size_t j = 0; j < len >> 1; ++j) {
+ sum += xLp[j] * y[i+j];
+ }
+
+ xCorr[i] = std::max(-1.0f, sum);
+ }
+
+ bestPitch = this->FindBestPitch(xCorr, y, len >> 1, maxPitch >> 1);
+
+ int offset;
+ /* Refine by pseudo-interpolation. */
+ if ( 0 < bestPitch[0] && bestPitch[0] < ((maxPitch >> 1) - 1)) {
+ float a = xCorr[bestPitch[0] - 1];
+ float b = xCorr[bestPitch[0]];
+ float c = xCorr[bestPitch[0] + 1];
+
+ if ( (c-a) > 0.7*(b-a) ) {
+ offset = 1;
+ } else if ( (a-c) > 0.7*(b-c) ) {
+ offset = -1;
+ } else {
+ offset = 0;
+ }
+ } else {
+ offset = 0;
+ }
+
+ return 2*bestPitch[0] - offset;
+}
+
+arrHp RNNoiseFeatureProcessor::FindBestPitch(vec1D32F& xCorr, vec1D32F& y, uint32_t len, uint32_t maxPitch)
+{
+ float Syy = 1;
+ arrHp bestNum {-1, -1};
+ arrHp bestDen {0, 0};
+ arrHp bestPitch {0, 1};
+
+ for (size_t j = 0; j < len; ++j) {
+ Syy += (y[j] * y[j]);
+ }
+
+ for (size_t i = 0; i < maxPitch; ++i ) {
+ if (xCorr[i] > 0) {
+ float xCorr16 = xCorr[i] * 1e-12f; /* Avoid problems when squaring. */
+
+ float num = xCorr16 * xCorr16;
+ if (num*bestDen[1] > bestNum[1]*Syy) {
+ if (num*bestDen[0] > bestNum[0]*Syy) {
+ bestNum[1] = bestNum[0];
+ bestDen[1] = bestDen[0];
+ bestPitch[1] = bestPitch[0];
+ bestNum[0] = num;
+ bestDen[0] = Syy;
+ bestPitch[0] = i;
+ } else {
+ bestNum[1] = num;
+ bestDen[1] = Syy;
+ bestPitch[1] = i;
+ }
+ }
+ }
+
+ Syy += (y[i+len]*y[i+len]) - (y[i]*y[i]);
+ Syy = std::max(1.0f, Syy);
+ }
+
+ return bestPitch;
+}
+
+int RNNoiseFeatureProcessor::RemoveDoubling(
+ vec1D32F& pitchBuf,
+ uint32_t maxPeriod,
+ uint32_t minPeriod,
+ uint32_t frameSize,
+ size_t pitchIdx0_)
+{
+ constexpr std::array<size_t, 16> secondCheck {0, 0, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2};
+ uint32_t minPeriod0 = minPeriod;
+ float lastPeriod = static_cast<float>(this->m_lastPeriod)/2;
+ float lastGain = static_cast<float>(this->m_lastGain);
+
+ maxPeriod /= 2;
+ minPeriod /= 2;
+ pitchIdx0_ /= 2;
+ frameSize /= 2;
+ uint32_t xStart = maxPeriod;
+
+ if (pitchIdx0_ >= maxPeriod) {
+ pitchIdx0_ = maxPeriod - 1;
+ }
+
+ size_t pitchIdx = pitchIdx0_;
+ const size_t pitchIdx0 = pitchIdx0_;
+
+ float xx = 0;
+ for ( size_t i = xStart; i < xStart+frameSize; ++i) {
+ xx += (pitchBuf[i] * pitchBuf[i]);
+ }
+
+ float xy = 0;
+ for ( size_t i = xStart; i < xStart+frameSize; ++i) {
+ xy += (pitchBuf[i] * pitchBuf[i-pitchIdx0]);
+ }
+
+ vec1D32F yyLookup (maxPeriod+1, 0);
+ yyLookup[0] = xx;
+ float yy = xx;
+
+ for ( size_t i = 1; i < yyLookup.size(); ++i) {
+ yy = yy + (pitchBuf[xStart-i] * pitchBuf[xStart-i]) -
+ (pitchBuf[xStart+frameSize-i] * pitchBuf[xStart+frameSize-i]);
+ yyLookup[i] = std::max(0.0f, yy);
+ }
+
+ yy = yyLookup[pitchIdx0];
+ float bestXy = xy;
+ float bestYy = yy;
+
+ float g = this->ComputePitchGain(xy, xx, yy);
+ float g0 = g;
+
+ /* Look for any pitch at pitchIndex/k. */
+ for ( size_t k = 2; k < 16; ++k) {
+ size_t pitchIdx1 = (2*pitchIdx0+k) / (2*k);
+ if (pitchIdx1 < minPeriod) {
+ break;
+ }
+
+ size_t pitchIdx1b;
+ /* Look for another strong correlation at T1b. */
+ if (k == 2) {
+ if ((pitchIdx1 + pitchIdx0) > maxPeriod) {
+ pitchIdx1b = pitchIdx0;
+ } else {
+ pitchIdx1b = pitchIdx0 + pitchIdx1;
+ }
+ } else {
+ pitchIdx1b = (2*(secondCheck[k])*pitchIdx0 + k) / (2*k);
+ }
+
+ xy = 0;
+ for ( size_t i = xStart; i < xStart+frameSize; ++i) {
+ xy += (pitchBuf[i] * pitchBuf[i-pitchIdx1]);
+ }
+
+ float xy2 = 0;
+ for ( size_t i = xStart; i < xStart+frameSize; ++i) {
+ xy2 += (pitchBuf[i] * pitchBuf[i-pitchIdx1b]);
+ }
+ xy = 0.5f * (xy + xy2);
+ VERIFY(pitchIdx1b < maxPeriod+1);
+ yy = 0.5f * (yyLookup[pitchIdx1] + yyLookup[pitchIdx1b]);
+
+ float g1 = this->ComputePitchGain(xy, xx, yy);
+
+ float cont;
+ if (std::abs(pitchIdx1-lastPeriod) <= 1) {
+ cont = lastGain;
+ } else if (std::abs(pitchIdx1-lastPeriod) <= 2 and 5*k*k < pitchIdx0) {
+ cont = 0.5f*lastGain;
+ } else {
+ cont = 0.0f;
+ }
+
+ float thresh = std::max(0.3, 0.7*g0-cont);
+
+ /* Bias against very high pitch (very short period) to avoid false-positives
+ * due to short-term correlation */
+ if (pitchIdx1 < 3*minPeriod) {
+ thresh = std::max(0.4, 0.85*g0-cont);
+ } else if (pitchIdx1 < 2*minPeriod) {
+ thresh = std::max(0.5, 0.9*g0-cont);
+ }
+ if (g1 > thresh) {
+ bestXy = xy;
+ bestYy = yy;
+ pitchIdx = pitchIdx1;
+ g = g1;
+ }
+ }
+
+ bestXy = std::max(0.0f, bestXy);
+ float pg;
+ if (bestYy <= bestXy) {
+ pg = 1.0;
+ } else {
+ pg = bestXy/(bestYy+1);
+ }
+
+ std::array<float, 3> xCorr {0};
+ for ( size_t k = 0; k < 3; ++k ) {
+ for ( size_t i = xStart; i < xStart+frameSize; ++i) {
+ xCorr[k] += (pitchBuf[i] * pitchBuf[i-(pitchIdx+k-1)]);
+ }
+ }
+
+ size_t offset;
+ if ((xCorr[2]-xCorr[0]) > 0.7*(xCorr[1]-xCorr[0])) {
+ offset = 1;
+ } else if ((xCorr[0]-xCorr[2]) > 0.7*(xCorr[1]-xCorr[2])) {
+ offset = -1;
+ } else {
+ offset = 0;
+ }
+
+ if (pg > g) {
+ pg = g;
+ }
+
+ pitchIdx0_ = 2*pitchIdx + offset;
+
+ if (pitchIdx0_ < minPeriod0) {
+ pitchIdx0_ = minPeriod0;
+ }
+
+ this->m_lastPeriod = pitchIdx0_;
+ this->m_lastGain = pg;
+
+ return this->m_lastPeriod;
+}
+
+float RNNoiseFeatureProcessor::ComputePitchGain(float xy, float xx, float yy)
+{
+ return xy / math::MathUtils::SqrtF32(1+xx*yy);
+}
+
+void RNNoiseFeatureProcessor::AutoCorr(
+ const vec1D32F& x,
+ vec1D32F& ac,
+ size_t lag,
+ size_t n)
+{
+ if (n < lag) {
+ printf_err("Invalid parameters for AutoCorr\n");
+ return;
+ }
+
+ auto fastN = n - lag;
+
+ /* Auto-correlation - can be done by PlatformMath functions */
+ this->PitchXCorr(x, x, ac, fastN, lag + 1);
+
+ /* Modify auto-correlation by summing with auto-correlation for different lags. */
+ for (size_t k = 0; k < lag + 1; k++) {
+ float d = 0;
+ for (size_t i = k + fastN; i < n; i++) {
+ d += x[i] * x[i - k];
+ }
+ ac[k] += d;
+ }
+}
+
+
+void RNNoiseFeatureProcessor::PitchXCorr(
+ const vec1D32F& x,
+ const vec1D32F& y,
+ vec1D32F& xCorr,
+ size_t len,
+ size_t maxPitch)
+{
+ for (size_t i = 0; i < maxPitch; i++) {
+ float sum = 0;
+ for (size_t j = 0; j < len; j++) {
+ sum += x[j] * y[i + j];
+ }
+ xCorr[i] = sum;
+ }
+}
+
+/* Linear predictor coefficients */
+void RNNoiseFeatureProcessor::LPC(
+ const vec1D32F& correlation,
+ int32_t p,
+ vec1D32F& lpc)
+{
+ auto error = correlation[0];
+
+ if (error != 0) {
+ for (int i = 0; i < p; i++) {
+
+ /* Sum up this iteration's reflection coefficient */
+ float rr = 0;
+ for (int j = 0; j < i; j++) {
+ rr += lpc[j] * correlation[i - j];
+ }
+
+ rr += correlation[i + 1];
+ auto r = -rr / error;
+
+ /* Update LP coefficients and total error */
+ lpc[i] = r;
+ for (int j = 0; j < ((i + 1) >> 1); j++) {
+ auto tmp1 = lpc[j];
+ auto tmp2 = lpc[i - 1 - j];
+ lpc[j] = tmp1 + (r * tmp2);
+ lpc[i - 1 - j] = tmp2 + (r * tmp1);
+ }
+
+ error = error - (r * r * error);
+
+ /* Bail out once we get 30dB gain */
+ if (error < (0.001 * correlation[0])) {
+ break;
+ }
+ }
+ }
+}
+
+void RNNoiseFeatureProcessor::Fir5(
+ const vec1D32F &num,
+ uint32_t N,
+ vec1D32F &x)
+{
+ auto num0 = num[0];
+ auto num1 = num[1];
+ auto num2 = num[2];
+ auto num3 = num[3];
+ auto num4 = num[4];
+ auto mem0 = 0;
+ auto mem1 = 0;
+ auto mem2 = 0;
+ auto mem3 = 0;
+ auto mem4 = 0;
+ for (uint32_t i = 0; i < N; i++)
+ {
+ auto sum_ = x[i] + (num0 * mem0) + (num1 * mem1) +
+ (num2 * mem2) + (num3 * mem3) + (num4 * mem4);
+ mem4 = mem3;
+ mem3 = mem2;
+ mem2 = mem1;
+ mem1 = mem0;
+ mem0 = x[i];
+ x[i] = sum_;
+ }
+}
+
+void RNNoiseFeatureProcessor::PitchFilter(FrameFeatures &features, vec1D32F &gain) {
+ std::vector<float> r(NB_BANDS, 0);
+ std::vector<float> rf(FREQ_SIZE, 0);
+ std::vector<float> newE(NB_BANDS);
+
+ for (size_t i = 0; i < NB_BANDS; i++) {
+ if (features.m_Exp[i] > gain[i]) {
+ r[i] = 1;
+ } else {
+
+
+ r[i] = std::pow(features.m_Exp[i], 2) * (1 - std::pow(gain[i], 2)) /
+ (.001 + std::pow(gain[i], 2) * (1 - std::pow(features.m_Exp[i], 2)));
+ }
+
+
+ r[i] = math::MathUtils::SqrtF32(std::min(1.0f, std::max(0.0f, r[i])));
+ r[i] *= math::MathUtils::SqrtF32(features.m_Ex[i] / (1e-8f + features.m_Ep[i]));
+ }
+
+ InterpBandGain(rf, r);
+ for (size_t i = 0; i < FREQ_SIZE - 1; i++) {
+ features.m_fftX[2 * i] += rf[i] * features.m_fftP[2 * i]; /* Real. */
+ features.m_fftX[2 * i + 1] += rf[i] * features.m_fftP[2 * i + 1]; /* Imaginary. */
+
+ }
+ ComputeBandEnergy(features.m_fftX, newE);
+ std::vector<float> norm(NB_BANDS);
+ std::vector<float> normf(FRAME_SIZE, 0);
+ for (size_t i = 0; i < NB_BANDS; i++) {
+ norm[i] = math::MathUtils::SqrtF32(features.m_Ex[i] / (1e-8f + newE[i]));
+ }
+
+ InterpBandGain(normf, norm);
+ for (size_t i = 0; i < FREQ_SIZE - 1; i++) {
+ features.m_fftX[2 * i] *= normf[i]; /* Real. */
+ features.m_fftX[2 * i + 1] *= normf[i]; /* Imaginary. */
+
+ }
+}
+
+void RNNoiseFeatureProcessor::FrameSynthesis(vec1D32F& outFrame, vec1D32F& fftY) {
+ std::vector<float> x(WINDOW_SIZE, 0);
+ InverseTransform(x, fftY);
+ ApplyWindow(x);
+ for (size_t i = 0; i < FRAME_SIZE; i++) {
+ outFrame[i] = x[i] + m_synthesisMem[i];
+ }
+ memcpy((m_synthesisMem.data()), &x[FRAME_SIZE], FRAME_SIZE*sizeof(float));
+}
+
+void RNNoiseFeatureProcessor::InterpBandGain(vec1D32F& g, vec1D32F& bandE) {
+ for (size_t i = 0; i < NB_BANDS - 1; i++) {
+ int bandSize = (m_eband5ms[i + 1] - m_eband5ms[i]) << FRAME_SIZE_SHIFT;
+ for (int j = 0; j < bandSize; j++) {
+ float frac = static_cast<float>(j) / bandSize;
+ g[(m_eband5ms[i] << FRAME_SIZE_SHIFT) + j] = (1 - frac) * bandE[i] + frac * bandE[i + 1];
+ }
+ }
+}
+
+void RNNoiseFeatureProcessor::InverseTransform(vec1D32F& out, vec1D32F& fftXIn) {
+
+ std::vector<float> x(WINDOW_SIZE * 2); /* This is complex. */
+ vec1D32F newFFT; /* This is complex. */
+
+ size_t i;
+ for (i = 0; i < FREQ_SIZE * 2; i++) {
+ x[i] = fftXIn[i];
+ }
+ for (i = FREQ_SIZE; i < WINDOW_SIZE; i++) {
+ x[2 * i] = x[2 * (WINDOW_SIZE - i)]; /* Real. */
+ x[2 * i + 1] = -x[2 * (WINDOW_SIZE - i) + 1]; /* Imaginary. */
+ }
+
+ constexpr uint32_t numFFt = 2 * FRAME_SIZE;
+ static_assert(numFFt != 0, "numFFt cannot be 0!");
+
+ vec1D32F fftOut = vec1D32F(x.size(), 0);
+ math::MathUtils::FftF32(x,fftOut, m_fftInstCmplx);
+
+ /* Normalize. */
+ for (auto &f: fftOut) {
+ f /= numFFt;
+ }
+
+ out[0] = WINDOW_SIZE * fftOut[0]; /* Real. */
+ for (i = 1; i < WINDOW_SIZE; i++) {
+ out[i] = WINDOW_SIZE * fftOut[(WINDOW_SIZE * 2) - (2 * i)]; /* Real. */
+ }
+}
+
+
+} /* namespace rnn */
+} /* namespace app */
+} /* namspace arm */