summaryrefslogtreecommitdiff
path: root/set_up_default_resources.py
diff options
context:
space:
mode:
authorKshitij Sisodia <kshitij.sisodia@arm.com>2021-12-24 11:05:11 +0000
committerLiam Barry <liam.barry@arm.com>2021-12-24 14:20:36 +0000
commit76a1580861210e0310db23acbc29e1064ae30ead (patch)
treef947145cffd944aa3724c90745fc0e9d8e2fb2f4 /set_up_default_resources.py
parent871fcdc755173b9f7ecb8cf9dc8dc6306329958c (diff)
downloadml-embedded-evaluation-kit-76a1580861210e0310db23acbc29e1064ae30ead.tar.gz
MLECO-2599: Replace DSCNN with MicroNet for KWS
Added SoftMax function to Mathutils to allow MicroNet to output probability as it does not nativelu have this layer. Minor refactoring to accommodate Softmax Calculations Extensive renaming and updating of documentation and resource download script. Added SoftMax function to Mathutils to allow MicroNet to output probability. Change-Id: I7cbbda1024d14b85c9ac1beea7ca8fbffd0b6eb5 Signed-off-by: Liam Barry <liam.barry@arm.com>
Diffstat (limited to 'set_up_default_resources.py')
-rwxr-xr-xset_up_default_resources.py22
1 files changed, 11 insertions, 11 deletions
diff --git a/set_up_default_resources.py b/set_up_default_resources.py
index 91007e4..d244213 100755
--- a/set_up_default_resources.py
+++ b/set_up_default_resources.py
@@ -56,12 +56,12 @@ json_uc_res = [{
},
{
"use_case_name": "kws",
- "resources": [{"name": "ds_cnn_clustered_int8.tflite",
- "url": "https://github.com/ARM-software/ML-zoo/raw/68b5fbc77ed28e67b2efc915997ea4477c1d9d5b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/ds_cnn_clustered_int8.tflite"},
- {"name": "ifm0.npy",
- "url": "https://github.com/ARM-software/ML-zoo/raw/68b5fbc77ed28e67b2efc915997ea4477c1d9d5b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/testing_input/input_2/0.npy"},
+ "resources": [{"name": "ifm0.npy",
+ "url": "https://github.com/ARM-software/ML-zoo/raw/9f506fe52b39df545f0e6c5ff9223f671bc5ae00/models/keyword_spotting/micronet_medium/tflite_int8/testing_input/input/0.npy"},
{"name": "ofm0.npy",
- "url": "https://github.com/ARM-software/ML-zoo/raw/68b5fbc77ed28e67b2efc915997ea4477c1d9d5b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/testing_output/Identity/0.npy"}]
+ "url": "https://github.com/ARM-software/ML-zoo/raw/9f506fe52b39df545f0e6c5ff9223f671bc5ae00/models/keyword_spotting/micronet_medium/tflite_int8/testing_output/Identity/0.npy"},
+ {"name": "kws_micronet_m.tflite",
+ "url": " https://github.com/ARM-software/ML-zoo/raw/9f506fe52b39df545f0e6c5ff9223f671bc5ae00/models/keyword_spotting/micronet_medium/tflite_int8/kws_micronet_m.tflite"}]
},
{
"use_case_name": "vww",
@@ -80,12 +80,12 @@ json_uc_res = [{
"url": "https://github.com/ARM-software/ML-zoo/raw/1a92aa08c0de49a7304e0a7f3f59df6f4fd33ac8/models/speech_recognition/wav2letter/tflite_pruned_int8/testing_input/input_2_int8/0.npy"},
{"sub_folder": "asr", "name": "ofm0.npy",
"url": "https://github.com/ARM-software/ML-zoo/raw/1a92aa08c0de49a7304e0a7f3f59df6f4fd33ac8/models/speech_recognition/wav2letter/tflite_pruned_int8/testing_output/Identity_int8/0.npy"},
- {"name": "ds_cnn_clustered_int8.tflite",
- "url": "https://github.com/ARM-software/ML-zoo/raw/68b5fbc77ed28e67b2efc915997ea4477c1d9d5b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/ds_cnn_clustered_int8.tflite"},
{"sub_folder": "kws", "name": "ifm0.npy",
- "url": "https://github.com/ARM-software/ML-zoo/raw/68b5fbc77ed28e67b2efc915997ea4477c1d9d5b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/testing_input/input_2/0.npy"},
+ "url": "https://github.com/ARM-software/ML-zoo/raw/9f506fe52b39df545f0e6c5ff9223f671bc5ae00/models/keyword_spotting/micronet_medium/tflite_int8/testing_input/input/0.npy"},
{"sub_folder": "kws", "name": "ofm0.npy",
- "url": "https://github.com/ARM-software/ML-zoo/raw/68b5fbc77ed28e67b2efc915997ea4477c1d9d5b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/testing_output/Identity/0.npy"}]
+ "url": "https://github.com/ARM-software/ML-zoo/raw/9f506fe52b39df545f0e6c5ff9223f671bc5ae00/models/keyword_spotting/micronet_medium/tflite_int8/testing_output/Identity/0.npy"},
+ {"name": "kws_micronet_m.tflite",
+ "url": "https://github.com/ARM-software/ML-zoo/raw/9f506fe52b39df545f0e6c5ff9223f671bc5ae00/models/keyword_spotting/micronet_medium/tflite_int8/kws_micronet_m.tflite"}]
},
{
"use_case_name": "noise_reduction",
@@ -303,8 +303,8 @@ def set_up_resources(run_vela_on_models: bool = False,
# 3. Run vela on models in resources_downloaded
# New models will have same name with '_vela' appended.
# For example:
- # original model: ds_cnn_clustered_int8.tflite
- # after vela model: ds_cnn_clustered_int8_vela_H128.tflite
+ # original model: kws_micronet_m.tflite
+ # after vela model: kws_micronet_m_vela_H128.tflite
#
# Note: To avoid to run vela twice on the same model, it's supposed that
# downloaded model names don't contain the 'vela' word.