aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tflite_supported_operators.py
blob: 60bc6fd0961d70de4b58be410715d05d47d41e8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# The TFLiteSupportedOperators class which is a collection of all TFLite supported operators and parameter checks.
from collections import defaultdict

import numpy as np

from .data_type import DataType
from .operation import Op
from .operation import Padding
from .supported_operators_util import docstring_format_args
from .supported_operators_util import list_formatter
from .tensor import check_quantized_tens_scaling_equal
from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
from .tflite_mapping import optype_to_builtintype


def _optype_formatter(op_list):
    # Convert internal op types to external names
    output = map(optype_to_builtintype, op_list)
    # Remove UNKNOWNs
    output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
    return list_formatter(output)


class TFLiteSupportedOperators:
    # Categorised lists of supported operators
    npu_pre_ops = set((Op.SplitSliceRead,))
    convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
    depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
    transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
    convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
    max_pooling_ops = Op.op_set(Op.is_maxpool_op)
    avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
    pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
    resizing_ops = set((Op.ResizeBilinear,))
    fc_vector_products = set((Op.QuantizedMatMul, Op.MatMul, Op.FullyConnected,))
    mac_main_ops = (
        # RNN/LSTM/GRU
        set((Op.BlockLSTM,))
        # conv/depthwiseconv/transposeconv
        | convolution_like_ops
        # pooling
        | pooling_ops
        # resizing/upscaling
        | resizing_ops
        # FC layers
        | fc_vector_products
        # Mean (converts to depthwise conv)
        | set((Op.Mean,))
    )
    unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
    binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
    binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
    binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
    binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
    elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
    pad_ops = set((Op.Pad,))
    supported_int32_tensor_ops = (
        set((Op.ReduceSum, Op.CLZ,)) | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
    )

    relu_ops = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Clip,))
    activation_ops = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.Softmax, Op.HardSwish))
    npu_post_ops = (
        # activation functions
        activation_ops
        # concatenation write direction
        | set((Op.ConcatSliceWrite,))
        # Quantization
        | set((Op.Quantize,))
    )
    split_ops = set((Op.Split, Op.SplitV, Op.StridedSlice, Op.Slice, Op.UnpackReshaped, Op.Unpack,))
    concat_ops = set((Op.Concat, Op.ConcatTFLite, Op.PackReshaped, Op.Pack,))
    memory_only_ops = set((Op.Reshape, Op.QuantizedReshape, Op.Squeeze, Op.ExpandDims,)) | concat_ops | split_ops
    per_axis_quant_ops = convolution_like_ops  # per-axis/channel quantization only currently supported for conv ops
    supported_fused_activations = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.LUT,))
    supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | pad_ops | npu_post_ops | memory_only_ops
    # Supported data types
    supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
    supported_faf_dtypes = set((DataType.uint8, DataType.int8, DataType.int16))
    supported_bias_dtypes = set((DataType.int32, DataType.int64))
    supported_pad_dtypes = set((DataType.int32, DataType.int64))
    # Defined ranges for allowed values:
    tens_dim_range = (1, 65535)
    stride_range = (1, 3)
    dilation_range = (1, 2)
    dilated_height_range = (1, 64)
    dilated_product_range = (1, 64 * 64)
    weights_limit = 127 * 65536
    filter_range = (1, 8)
    filter_height_range = (1, 256)
    filter_product_range = (1, 256 * 256)
    mean_kernel_product = 64 * 64
    mean_kernel_product_int8 = 16 * 16
    mean_kernel_product_avgpool = 256 * 256

    def __init__(self):
        # Setup the generic constraints. Note: the order matters
        self.generic_constraints = []
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dtype)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_int32_ops)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dimension)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_quant_per_axis)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf_type)

        # Setup specific constraints. Note: the order matters
        self.specific_constraints = defaultdict(list)

        # Conv-like checks:
        for op_type in TFLiteSupportedOperators.convolution_like_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilation_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_height_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_product_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_limit)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
        # Depthwise Conv specific checks:
        for op_type in TFLiteSupportedOperators.depthwise_convolution_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_depth_multiplier)
        # Transpose Conv specific checks:
        for op_type in TFLiteSupportedOperators.transpose_convolution_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_stride)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_same)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_valid)

        # Pooling checks:
        for op_type in TFLiteSupportedOperators.pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
        # AVG pooling specific checks:
        for op_type in TFLiteSupportedOperators.avg_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range_valid_pad)
            self.specific_constraints[op_type].append(
                TFLiteSupportedOperators.constraint_filter_product_range_valid_pad
            )
        # MAX pooling specific checks:
        for op_type in TFLiteSupportedOperators.max_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_product_range)

        # Resizing specific checks:
        for op_type in TFLiteSupportedOperators.resizing_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bilinear_resize_attrs)

        # Vector Product specific checks:
        for op_type in TFLiteSupportedOperators.fc_vector_products:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)

        # Element-wise checks:
        for op_type in TFLiteSupportedOperators.elem_wise_main_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_elemwise_batch_size)
        # Binary Min/Max specific checks:
        for op_type in TFLiteSupportedOperators.binary_elem_wise_min_max_ops:
            self.specific_constraints[op_type].append(
                TFLiteSupportedOperators.constraint_matching_quantization_parameters
            )
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
        # Binary Add/Mul/Sub specific checks:
        for op_type in TFLiteSupportedOperators.binary_elem_wise_add_mul_sub:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
        # Binary Shift specific checks:
        for op_type in TFLiteSupportedOperators.binary_elem_wise_shift_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_inputs_int32)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)

        # SHL specific checks:
        self.specific_constraints[Op.SHL].append(TFLiteSupportedOperators.constraint_output_int32)

        # CLZ specific checks:
        self.specific_constraints[Op.CLZ].append(TFLiteSupportedOperators.constraint_output_int32)

        # StridedSlice specific checks:
        self.specific_constraints[Op.StridedSlice].append(
            TFLiteSupportedOperators.constraint_stridedslice_stride_values
        )

        # Pad specific checks:
        self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_shape)
        self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_padding_dimensions)
        self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_type)

        # Mean specific checks:
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_batch_size)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_avgpool)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_int8)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_depthwise_conv_height_single_axis)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_avgpool_height_single_axis)

        # Reshape specific checks:
        self.specific_constraints[Op.Reshape].append(TFLiteSupportedOperators.constraint_reshape_shape_constant)

    def is_operator_supported(self, op):
        ext_type = optype_to_builtintype(op.type)
        if op.type not in TFLiteSupportedOperators.supported_operators:
            if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
                print(f"Info: {ext_type} '{op.name}' is a CPU only op")
            return False

        for constraint in self.generic_constraints + self.specific_constraints[op.type]:
            valid, extra = constraint(op)
            if not valid:
                print(f"Warning: {ext_type} '{op.name}' is not supported on the NPU. Placing on CPU instead")
                print(f" - {constraint.__doc__}")
                if extra:
                    print(f"   {extra}")
                return False

        return True

    @classmethod
    @docstring_format_args([list_formatter(supported_op_dtypes)])
    def constraint_tens_dtype(cls, op):
        "Tensors must be of type: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        if not tensors:
            tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if tens.dtype not in cls.supported_op_dtypes:
                valid = False
                extra.append(f"Tensor '{tens.name}' has data type: {tens.dtype}")
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([_optype_formatter(supported_int32_tensor_ops)])
    def constraint_tens_int32_ops(cls, op):
        "Tensors which are int32 are only valid when op type is: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        if not tensors:
            tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has int32 tensor(s): {extra}"

    @classmethod
    @docstring_format_args(tens_dim_range)
    def constraint_tens_dimension(cls, op):
        "Tensor dimensions must be in the range [{}, {}]"
        tens_min, tens_max = cls.tens_dim_range
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        if not tensors:
            tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if not all(tens_min <= dim <= tens_max for dim in tens.shape):
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([_optype_formatter(per_axis_quant_ops)])
    def constraint_tens_quant_per_axis(cls, op):
        "Per-axis quantization is only supported for the following op types: {}"
        valid = True
        extra = []
        if op.type not in cls.per_axis_quant_ops:
            tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
            for tens in tensors:
                if tens.quantization.is_per_axis():
                    valid = False
                    extra.append(tens.name)
        return valid, "The following tensor(s) have per-axis quantization parameters: " + ", ".join(extra)

    @classmethod
    @docstring_format_args([_optype_formatter(supported_fused_activations)])
    def constraint_faf(cls, op):
        "The fused activation function (if present) must be one of type: {}"
        if op.activation is None:
            res = True, "Op has no fused activation function"
        else:
            faf = op.activation.op_type
            valid = faf in cls.supported_fused_activations
            res = valid, f"Op has its fused activation function as: {faf}"
        return res

    @classmethod
    @docstring_format_args([list_formatter(supported_faf_dtypes)])
    def constraint_faf_type(cls, op):
        "If a fused activation function is present, the Output tensor must be one of type: {}"
        if op.activation is None:
            res = True, "Op has no fused activation function"
        else:
            valid = op.ofm.dtype in cls.supported_faf_dtypes
            ext_type = optype_to_builtintype(op.activation.op_type)
            res = valid, f"Op has fused activation function {ext_type}, and Output tensor data type: {op.ofm.dtype}"
        return res

    @classmethod
    @docstring_format_args(stride_range)
    def constraint_stride_range(cls, op):
        "Stride values for both width and height must be in the range [{}, {}]"
        w, h = op.get_kernel_stride()
        stride_min, stride_max = cls.stride_range
        valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
        return valid, f"Op has stride WxH as: {w}x{h}"

    @classmethod
    @docstring_format_args(dilation_range)
    def constraint_dilation_range(cls, op):
        "Dilation factor values for both width and height must be in the range [{}, {}]"
        w, h = op.get_kernel_dilation()
        dilation_min, dilation_max = cls.dilation_range
        valid = (dilation_min <= w <= dilation_max) and (dilation_min <= h <= dilation_max)
        return valid, f"Op has dilation factor WxH as: {w}x{h}"

    @classmethod
    @docstring_format_args(dilated_height_range)
    def constraint_dilated_height_range(cls, op):
        "Dilated kernel height must be in the range [{}, {}]"
        h = op.kernel.area_height()
        dilated_height_min, dilated_height_max = cls.dilated_height_range
        valid = dilated_height_min <= h <= dilated_height_max
        return valid, f"Op has dilated kernel height as: {h}"

    @classmethod
    @docstring_format_args(dilated_product_range)
    def constraint_dilated_product_range(cls, op):
        "Product of dilated kernel width and height must be in the range [{}, {}]"
        product = op.kernel.area_width() * op.kernel.area_height()
        dilated_product_min, dilated_product_max = cls.dilated_product_range
        valid = dilated_product_min <= product <= dilated_product_max
        return valid, f"Op has product of dilated kernel width and height as: {product}"

    @staticmethod
    def constraint_weights_type(op):
        "Weight tensor must be 8-bit"
        weights = op.weights
        valid = weights.element_size() == 1
        return valid, f"Tensor '{weights.name}' is {int(weights.element_size() * 8)}-bit"

    @staticmethod
    def constraint_weights_const(op):
        "Weight tensor must be constant"
        weights = op.weights
        valid = weights.values is not None
        return valid, f"Tensor '{weights.name}' has non-constant values"

    @classmethod
    @docstring_format_args([weights_limit])
    def constraint_weights_limit(cls, op):
        "The sum of the weights cannot exceed {}"
        weights = op.weights
        values = weights.values.astype(np.int64) - weights.quantization.zero_point
        limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
        valid = limit <= cls.weights_limit
        return valid, f"Tensor '{weights.name}' has the sum of weights: {limit}"

    @classmethod
    @docstring_format_args([list_formatter(supported_bias_dtypes)])
    def constraint_bias_type(cls, op):
        "Optional Bias tensor must be of type: {}"
        bias = op.bias
        if bias:
            valid = bias.dtype in cls.supported_bias_dtypes
            return valid, f"Tensor '{bias.name}' has data type: {bias.dtype}"
        return True, "Op has no bias tensor"

    @staticmethod
    def constraint_bias_40bit(op):
        "Optional Bias tensor values must fit within 40-bits"
        bias = op.bias
        if bias and bias.dtype == DataType.int64 and bias.values is not None:
            valid = all(len(bin(value)[2:]) <= 40 for value in bias.values)
            return valid, f"Tensor '{bias.name}' has values larger than 40-bits"
        return True, "Op has no bias tensor, or it fits in 40-bit"

    @staticmethod
    def constraint_batch_size(op):
        "IFM Tensor batch size must be 1"
        ifm = op.ifm
        valid = ifm.shape[0] == 1
        return valid, f"Tensor '{ifm.name}' has batch size: {ifm.shape[0]}"

    @staticmethod
    def constraint_depth_multiplier(op):
        "For depth multipliers > 1, IFM channels must be 1 and OFM channels must be equal to the depth multiplier"
        depth_multiplier = op.attrs.get("depth_multiplier", 1)
        if depth_multiplier > 1:
            ifm_channels = op.ifm.shape[3]
            ofm_channels = op.ofm.shape[3]
            valid = (ifm_channels == 1) and (ofm_channels == depth_multiplier)
            extra = (
                f"Op has ifm_channels={ifm_channels}, ofm_channels={ofm_channels}"
                f" and depth_multiplier={depth_multiplier}"
            )
            return valid, extra
        return True, "Op has depth_multiplier=1"

    @staticmethod
    def constraint_tconv_stride(op):
        "Stride values for both width and height must be 2"
        w = op.kernel.stride.x
        h = op.kernel.stride.y
        valid = (w == 2) and (h == 2)
        return valid, f"Op has stride WxH as: {w}x{h}"

    @staticmethod
    def constraint_tconv_same(op):
        "SAME padding: OFM dimensions must equal IFM dimensions multiplied by stride"
        if op.attrs["padding"] == Padding.SAME:
            w = op.kernel.stride.x
            h = op.kernel.stride.y
            ifm_shape = op.ifm.shape
            ofm_shape = op.ofm.shape
            valid = (ofm_shape[1] == (ifm_shape[1] * h)) and (ofm_shape[2] == (ifm_shape[2] * w))
            return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and stride WxH as {w}x{h}"
        return True, "Op has padding=VALID"

    @staticmethod
    def constraint_tconv_valid(op):
        """VALID padding: OFM dimensions must equal IFM dimensions multiplied by stride,
                  minus difference between kernel size and stride"""
        if op.attrs["padding"] == Padding.VALID:
            s_w = op.kernel.stride.x
            s_h = op.kernel.stride.y
            k_w = op.kernel.width
            k_h = op.kernel.height
            ifm_shape = op.ifm.shape
            ofm_shape = op.ofm.shape
            height_check = ofm_shape[1] == (ifm_shape[1] * s_h + max(k_h - s_h, 0))
            width_check = ofm_shape[2] == (ifm_shape[2] * s_w + max(k_w - s_w, 0))
            valid = height_check and width_check
            extra = (
                f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape},"
                f" stride WxH as {s_w}x{s_h} and kernel WxH as {k_w}x{k_h}"
            )
            return valid, extra
        return True, "Op has padding=SAME"

    @classmethod
    @docstring_format_args(filter_range)
    def constraint_filter_range(cls, op):
        "Kernel filter values for both width and height must be in the range [{}, {}]"
        if op.attrs["padding"] == Padding.SAME:
            w = op.kernel.width
            h = op.kernel.height
            filter_min, filter_max = cls.filter_range
            valid = (filter_min <= w <= filter_max) and (filter_min <= h <= filter_max)
            return valid, f"Op has kernel filter WxH as: {w}x{h}"
        return True, "Op has padding=VALID"

    @classmethod
    @docstring_format_args(filter_height_range)
    def constraint_filter_height_range(cls, op):
        "Kernel filter height must be in the range [{}, {}]"
        h = op.kernel.height
        filter_height_min, filter_height_max = cls.filter_height_range
        valid = filter_height_min <= h <= filter_height_max
        return valid, f"Op has kernel filter height as: {h}"

    @classmethod
    @docstring_format_args(filter_product_range)
    def constraint_filter_product_range(cls, op):
        "Product of kernel filter width and height must be in the range [{}, {}]"
        product = op.kernel.elements_wh()
        filter_product_min, filter_product_max = cls.filter_product_range
        valid = filter_product_min <= product <= filter_product_max
        return valid, f"Op has product of kernel filter width and height as: {product}"

    @staticmethod
    @docstring_format_args(filter_height_range)
    def constraint_filter_height_range_valid_pad(op):
        "VALID padding: Kernel filter height must be in the range [{}, {}]"
        if op.attrs["padding"] == Padding.VALID:
            return TFLiteSupportedOperators.constraint_filter_height_range(op)
        return True, "Op has padding=SAME"

    @staticmethod
    @docstring_format_args(filter_product_range)
    def constraint_filter_product_range_valid_pad(op):
        "VALID padding: Product of kernel filter width and height must be in the range [{}, {}]"
        if op.attrs["padding"] == Padding.VALID:
            return TFLiteSupportedOperators.constraint_filter_product_range(op)
        return True, "Op has padding=SAME"

    @staticmethod
    def constraint_resize(op):
        """The width and height of the IFM and OFM must match one of the following criteria:
        IFM W and H must both be 1
        IFM must match OFM
        OFM W and H must be 2x IFM -1, if align_corners is True
        OFM W and H must be 2x IFM, if align_corners is False"""
        # Easier to start with False condition as very few cases result in a supported resize
        valid = False
        ifm_shape = op.ifm.shape
        ofm_shape = op.ofm.shape
        align_corners = op.attrs.get("align_corners", False)
        if len(ifm_shape) == 4:
            # Valid if IFM W and H are both 1, or IFM and OFM shape are the same
            if ((ifm_shape[1] == 1) and (ifm_shape[2] == 1)) or (ifm_shape == ofm_shape):
                valid = True
            else:
                upscaled_shape = np.array(ifm_shape[1:3])
                out_shape = np.array(ofm_shape[1:3])
                while (upscaled_shape < out_shape).all():
                    upscaled_shape *= 2
                    if align_corners:
                        upscaled_shape -= 1
                    # Valid if OFM is 2x IFM (-1 for align corners)
                    if np.array_equal(out_shape, upscaled_shape):
                        valid = True
                        break
        return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and align_corners={align_corners}"

    @staticmethod
    def constraint_bilinear_resize_attrs(op):
        "half_pixel_centers are not supported"
        valid = True
        if op.attrs.get("half_pixel_centers"):
            valid = False
        return valid, f"Op has half_pixel_centers set to {not valid}."

    @staticmethod
    def constraint_pad_shape(op):
        "The padding tensor must have the shape [3,2] or [4,2]"
        valid = op.inputs[1].shape in ([3, 2], [4, 2])
        return valid, f"The pad tensor has the shape: {op.inputs[1].shape}"

    @classmethod
    @docstring_format_args([list_formatter(supported_pad_dtypes)])
    def constraint_pad_type(cls, op):
        "Pad tensor must be of type: {}"
        pad_tensor = op.inputs[1]
        valid = pad_tensor.dtype in cls.supported_pad_dtypes
        return valid, f"Tensor '{pad_tensor.name}' has data type: {pad_tensor.dtype}"

    @staticmethod
    def constraint_padding_dimensions(op):
        "The pad tensor can only pad width and height"
        pad_tensor = op.inputs[1].values

        valid = sum(pad_tensor[-1, :]) == 0
        if valid and len(pad_tensor) > 3:
            valid = sum(pad_tensor[0, :]) == 0
        return valid, f"First dimension padding: {pad_tensor[0,:]}, last dimension padding: {pad_tensor[-1,:]}"

    @staticmethod
    def constraint_stridedslice_stride_values(op):
        "All Strides values must be 1"
        strides = op.inputs[3]
        valid = all(stride == 1 for stride in strides.values)
        return valid, f"Op has strides values {strides.values}"

    @staticmethod
    def constraint_inputs_int32(op):
        "Both Input data types must be int32"
        ifm_dtype = op.ifm.dtype
        ifm2_dtype = op.ifm2.dtype
        valid = (ifm_dtype == DataType.int32) and (ifm2_dtype == DataType.int32)
        return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"

    @staticmethod
    def constraint_output_int32(op):
        "OFM must be int32"
        ofm_dtype = op.ofm.dtype
        valid = ofm_dtype == DataType.int32
        return valid, f"Op has ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_matching_quantization_parameters(op):
        "Both Input quantization parameters must match OFM quantization parameters"
        valid = True
        extra = []
        if not check_quantized_tens_scaling_equal(op.ofm, op.ifm):
            valid = False
            extra.append(op.ifm.name)
        if op.ifm2 is not None and not check_quantized_tens_scaling_equal(op.ofm, op.ifm2):
            valid = False
            extra.append(op.ifm2.name)
        extra = ", ".join(extra)
        return valid, f"Op has tensors with different quantization parameters to the OFM '{op.ofm.name}': {extra}"

    @staticmethod
    def constraint_elemwise_batch_size(op):
        "Batch size must be 1 for Input tensors with more than 2 dimensions"
        valid = True
        extra = []
        for tens in (op.ifm, op.ifm2):
            # Unary ops have ifm2 as None
            if tens is not None:
                if (len(tens.shape) > 2) and (tens.shape[0] != 1):
                    valid = False
                    extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has invalid input tensors: {extra}"

    @staticmethod
    def constraint_broadcast_shapes(op):
        "Broadcasting is only allowed for rank indices with dimension 1, from either IFM1 or IFM2"
        ifm_shape = op.ifm.shape
        ifm2_shape = op.ifm2.shape if op.ifm2 else None
        ofm_shape = op.ofm.shape
        valid = True
        if ifm_shape is not None and ifm2_shape is not None:
            # align trailing dimensions
            size = min(len(ifm_shape), len(ifm2_shape))
            for i, i2, o in zip(ifm_shape[-size:], ifm2_shape[-size:], ofm_shape[-size:]):
                mi = max(i, i2)
                # Input dimensions should match or one should be of dimension 1
                # Output dimension should match the largest input dimension, together
                # with constraint_match_either_shapes ensures broadcast from only one input
                if not (i == i2 or i == 1 or i2 == 1) or o != mi:
                    valid = False
                    break

        return valid, f"Op has ifm_shape={ifm_shape} and ifm2_shape={ifm2_shape}"

    @classmethod
    @docstring_format_args([mean_kernel_product_avgpool])
    def constraint_mean_height_width_product_avgpool(cls, op):
        """Product of height and width can be at most {}"""
        shape = op.inputs[0].shape
        hi = 0 if len(shape) < 4 else 1
        h, w = shape[hi : hi + 2]
        max_prod = cls.mean_kernel_product_avgpool
        return h * w <= max_prod, f"Product of height and width is {h * w}"

    @classmethod
    @docstring_format_args([mean_kernel_product])
    def constraint_mean_height_width_product(cls, op):
        """Product of height and width can be at most {} when IFM and OFM have different scale or zero point,
        or keep_dims is True"""
        ifmq, ofmq = op.ifm.quantization, op.ofm.quantization
        keep_dims = op.attrs.get("keep_dims")
        # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
        if not keep_dims and ifmq.scale_f32 == ofmq.scale_f32 and ifmq.zero_point == ofmq.zero_point:
            return True, ""
        shape = op.inputs[0].shape
        hi = 0 if len(shape) < 4 else 1
        h, w = shape[hi : hi + 2]
        max_prod = cls.mean_kernel_product
        return h * w <= max_prod, f"Product of height and width is {h * w}"

    @classmethod
    @docstring_format_args([mean_kernel_product_int8])
    def constraint_mean_height_width_product_int8(cls, op):
        """Product of IFM height and width can be at most {} when the following are true:
        IFM dimensions are 4,
        Axis indices are 1 and 2,
        keep_dims is set to True and
        IFM datatype is int8"""
        shape = op.ifm.shape
        axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
        # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
        # and constraint_mean_height_width_product
        if (
            len(shape) != 4
            or op.ifm.dtype != DataType.int8
            or not op.attrs.get("keep_dims")
            or axis not in ([1, 2], [2, 1])
        ):
            return True, ""
        hi = 0 if len(shape) < 4 else 1
        h, w = shape[hi : hi + 2]
        max_prod = cls.mean_kernel_product_int8
        return h * w <= max_prod, f"Product of height and width is {h * w}"

    @classmethod
    @docstring_format_args([dilated_height_range[1]])
    def constraint_depthwise_conv_height_single_axis(cls, op):
        """Height can be at most {} for single axis when axis is 1."""
        inp, axis = op.inputs
        if axis.shape == [] or axis.shape[0] == 1:  # single axis
            axis = int(axis.values) if len(axis.shape) == 0 else int(axis.values[0])
        else:
            # Multiple axes, constraint does not apply
            return True, ""

        # Height and width axes have different index depending on dimensions
        shape = inp.shape
        h = shape[0] if len(shape) < 4 else shape[1]

        # If quantization is the same across IFM and OFM op will become avgpool and this constraint does not apply.
        ifm, ofm = op.get_ifm_ofm()
        if check_quantized_tens_scaling_equal(ifm, ofm):
            return True, ""

        return h <= 64 or axis != 1, f"Height is {h} and axis is {axis}."

    @classmethod
    @docstring_format_args([filter_height_range[1]])
    def constraint_avgpool_height_single_axis(cls, op):
        """Avgpool height can be at most {} for single axis when axis is 1."""
        inp, axis = op.inputs
        if axis.shape == [] or axis.shape[0] == 1:  # single axis
            axis = int(axis.values) if len(axis.shape) == 0 else int(axis.values[0])
        else:
            # Multiple axes, constraint does not apply
            return True, ""

        # Height and width axes have different index depending on dimensions
        shape = inp.shape
        h = shape[0] if len(shape) < 4 else shape[1]
        ifm, ofm = op.get_ifm_ofm()
        scaling_equal = check_quantized_tens_scaling_equal(ifm, ofm)

        return h <= 256 or axis != 1 or not scaling_equal, f"Height is {h} and axis is {axis}"

    @staticmethod
    def constraint_reshape_shape_constant(op):
        "Shape must be constant"
        valid = True
        extra = []

        reshape_tens = op.inputs[1]
        if reshape_tens is not None:
            # constant inputs have either no driving operator or a const one
            # create a list of non-constant inputs
            if not (len(reshape_tens.ops) == 0 or reshape_tens.ops[0].type == Op.Const):
                valid = False
                extra.append(reshape_tens.name)
        extra = ", ".join(extra)

        return valid, f"Op has non-const input(s): {extra}"