aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tflite_model_semantic.py
blob: 3b7f248a9b952d10307f619495d72102d5b8a7dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright (C) 2021 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# The TFLiteSemantic class which is a collection of TensorFlow lite model semantic checks.
from collections import defaultdict

import numpy as np

from .data_type import BaseType
from .data_type import DataType
from .numeric_util import is_integer
from .operation import get_slice_offsets
from .operation import Op
from .supported_operators_util import docstring_format_args
from .supported_operators_util import list_formatter
from .tensor import check_quantized_tens_scaling_equal
from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
from .tflite_mapping import optype_to_builtintype


def _optype_formatter(op_list):
    # Convert internal op types to external names
    output = map(optype_to_builtintype, op_list)
    # Remove UNKNOWNs
    output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
    return list_formatter(output)


class TFLiteSemantic:
    # Categorised lists of operators
    convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
    depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
    transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
    convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
    max_pooling_ops = Op.op_set(Op.is_maxpool_op)
    avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
    pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
    unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
    binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
    binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
    binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
    binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
    elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
    shapeless_input_ops = binary_elem_wise_main_ops | set((Op.Split, Op.SplitV, Op.Mean, Op.ExpandDims))
    reshape_ops = set((Op.Reshape, Op.QuantizedReshape, Op.Squeeze, Op.ExpandDims,))

    def __init__(self):
        # Setup the generic constraints. Note: the order matters
        self.generic_constraints = []
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_no_dynamic)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_defined_shape)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_output_scalar)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_input_scalar)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_shape_size)

        self.generic_constraints.append(TFLiteSemantic.constraint_tens_quant_none_check)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_quant_scale)
        self.generic_constraints.append(TFLiteSemantic.constraint_quant_scale_inf)
        self.generic_constraints.append(TFLiteSemantic.constraint_none_const_tensors)

        # Setup specific constraints. Note: the order matters
        self.specific_constraints = defaultdict(list)

        # Conv-like checks:
        for op_type in TFLiteSemantic.convolution_like_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_stride_type)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_dilation_type)

        # Pooling checks:
        for op_type in TFLiteSemantic.pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_stride_type)
        # AVG pooling specific checks:
        for op_type in TFLiteSemantic.avg_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_filter_type)
        # MAX pooling specific checks:
        for op_type in TFLiteSemantic.max_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_filter_type)

        # Concat specific checks:
        for op_type in (Op.Concat, Op.ConcatTFLite):
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_axis_exists)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_axis_valid)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_dimensionality)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_valid_dimensions)

        # Element-wise checks:
        for op_type in TFLiteSemantic.elem_wise_main_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_either_shapes)
        # Unary specific checks:
        for op_type in TFLiteSemantic.unary_elem_wise_main_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
        # Binary Min/Max specific checks:
        for op_type in TFLiteSemantic.binary_elem_wise_min_max_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
        # Binary Add/Mul/Sub specific checks:
        for op_type in TFLiteSemantic.binary_elem_wise_add_mul_sub:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_inputs_types)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_signed)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_unsigned_valid)

        # Ops reshaping dimensions: Reshape, Squeeze and ExpandDims
        for op_type in TFLiteSemantic.reshape_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_quant)

        # Softmax specific checks:
        self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_matching_shapes)
        self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_matching_in_out_types)
        self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_beta_value_range)

        # SplitV specific checks:
        self.specific_constraints[Op.SplitV].append(TFLiteSemantic.constraint_splitv_inferred)

        # StridedSlice specific checks:
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_stridedslice_input_count)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_stridedslice_inputs_const)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_ellipsis_mask)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_axis_masks)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_slice_ranges)

        # LeakyRelu specific checks:
        self.specific_constraints[Op.LeakyRelu].append(TFLiteSemantic.constraint_alpha_valid)

        # FullyConnected specific checks:
        self.specific_constraints[Op.FullyConnected].append(TFLiteSemantic.constraint_fc_output_2d)
        self.specific_constraints[Op.FullyConnected].append(TFLiteSemantic.constraint_keep_dim_ifm_ofm)

        # Pad specific checks:
        self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_input_count)
        self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_constant)

        # HardSwish specific checks:
        self.specific_constraints[Op.HardSwish].append(TFLiteSemantic.constraint_input_8bit)
        self.specific_constraints[Op.HardSwish].append(TFLiteSemantic.constraint_matching_in_out_types)
        # Mean specific checks:
        self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_input_8bit)
        self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_mean_input_dims)
        self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_mean_axis)

    def is_operator_semantic_valid(self, op):
        ext_type = optype_to_builtintype(op.type)

        if op.type in (Op.Placeholder, Op.SubgraphInput, Op.Const):
            return True

        for constraint in self.generic_constraints + self.specific_constraints[op.type]:
            valid, extra = constraint(op)
            if not valid:
                print(
                    f"Warning: Unsupported TensorFlow Lite semantics for {ext_type} '{op.name}'. Placing on CPU instead"
                )
                print(f" - {constraint.__doc__}")
                if extra:
                    print(f"   {extra}")
                return False

        return True

    @staticmethod
    def constraint_none_const_tensors(op):
        "Constant tensors should not have NoneType-values"
        valid = True
        extra = ""
        for tens in filter(None, op.inputs):
            if len(tens.ops) > 0 and tens.ops[0].type == Op.Const and tens.values is None:
                valid = False
                extra = str(tens.name)
        return valid, f"Unexpected None value for constant tensor: {extra}"

    @staticmethod
    def constraint_tens_no_dynamic(op):
        "Input(s) and Output tensors must not be dynamic"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if (tens.shape == []) and (tens.values is None):
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has dynamic tensor(s): {extra}"

    @staticmethod
    def constraint_tens_defined_shape(op):
        "Input(s) and Output tensors must have a defined shape"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if not tens.has_fully_defined_shape():
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_output_scalar(op):
        "Output tensors cannot be scalar"
        ofm = op.ofm
        valid = ofm.shape != []
        return valid, f"Output Tensor '{ofm.name}' is scalar"

    @classmethod
    @docstring_format_args([_optype_formatter(shapeless_input_ops)])
    def constraint_tens_input_scalar(cls, op):
        "Scalar Input tensors are only valid for op type: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if (tens.shape == []) and (op.type not in cls.shapeless_input_ops):
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has scalar input tensor(s): {extra}"

    @staticmethod
    def constraint_tens_shape_size(op):
        "Input(s) and Output tensors must not be greater than 4D"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if len(tens.shape) > 4:
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_quant_none_check(op):
        "Input(s), Output and Weight tensors must have quantization parameters"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        for tens in tensors:
            if tens.quantization is None:
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has tensors with missing quantization parameters: {extra}"

    @staticmethod
    def constraint_tens_quant_scale(op):
        "Input(s), Output and Weight tensors with quantization scales must be finite"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        for tens in tensors:
            if (tens.quantization.scale_f32 is not None) and np.isinf(tens.quantization.scale_f32).any():
                valid = False
                extra.append(f"Tensor '{tens.name}' has quantization scale: {tens.quantization.scale_f32}")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_fc_output_2d(op):
        "The output tensor(s) must have 2D shape"
        valid = True
        extra = []
        for tens in op.outputs:
            if len(tens.shape) != 2:
                valid = False
                extra.append(f"Tensor '{tens.name}' is {len(tens.shape)}D")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_stride_type(op):
        "Stride values for both width and height must be integer types"
        w, h = op.get_kernel_stride()
        valid = is_integer(w) and is_integer(h)
        return valid, f"Op has stride WxH as: {repr(w)}x{repr(h)}"

    @staticmethod
    def constraint_dilation_type(op):
        "Dilation factor values for both width and height must be integer types"
        w, h = op.get_kernel_dilation()
        valid = is_integer(w) and is_integer(h)
        return valid, f"Op has dilation factor WxH as: {repr(w)}x{repr(h)}"

    @staticmethod
    def constraint_quant_scale_inf(op):
        "Input and Output tensors must have quantization scales that fit within float32 precision"
        if op.ofm is not None and op.ofm.is_quantized():
            ofm_scale = op.ofm.quantization.scale_f32
            if np.any(ofm_scale < np.finfo(np.float32).tiny):
                return (
                    False,
                    f"The quantization scale of the output tensor is {ofm_scale}, "
                    + f"minimum supported is: {np.finfo(np.float32).tiny}",
                )
            if op.ifm is not None and op.ifm.is_quantized():
                ifm_scale = op.ifm.quantization.scale_f32
                if np.any(np.isinf(ifm_scale / ofm_scale)):
                    return (
                        False,
                        f"IFM scale divided by OFM scale is infinite, ifm_scale={ifm_scale} ofm_scale={ofm_scale}",
                    )
        return True, "Op's quantization is ok"

    @staticmethod
    def constraint_matching_in_out_types(op):
        "IFM and OFM data types must match"
        ifm_dtype = op.ifm.dtype
        ofm_dtype = op.ofm.dtype
        valid = ifm_dtype == ofm_dtype
        return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_beta_value_range(op):
        "Beta value needs to be positive"
        beta = op.attrs.get("beta", 1.0)
        valid = beta >= 0
        return valid, f"Op has beta={beta}"

    @staticmethod
    def constraint_filter_type(op):
        "Kernel filter values for both width and height must be integer types"
        w = op.kernel.width
        h = op.kernel.height
        valid = is_integer(w) and is_integer(h)
        return valid, f"Op has kernel filter WxH as: {repr(w)}x{repr(h)}"

    @staticmethod
    def constraint_matching_shapes(op):
        "IFM and OFM shapes must match"
        ifm_shape = op.ifm.shape
        ofm_shape = op.ofm.shape
        valid = ifm_shape == ofm_shape
        return valid, f"Op has ifm_shape={ifm_shape} and ofm_shape={ofm_shape}"

    @staticmethod
    def constraint_splitv_inferred(op):
        "Only one size is allowed to be inferred"
        sizes = op.inputs[1].values
        valid = np.count_nonzero(sizes == -1) <= 1
        return valid, f"Op has multiple inferred sizes (-1): {sizes}"

    @staticmethod
    def constraint_axis_exists(op):
        "Axis attribute must exist"
        axis = op.attrs.get("axis")
        valid = axis is not None
        return valid, f"Op has axis={axis}"

    @staticmethod
    def constraint_axis_valid(op):
        "Axis attribute must be in the range [0, <ofm_dimensions>)"
        dims = len(op.ofm.shape)
        axis = op.attrs["axis"]
        axis += dims if axis < 0 else 0
        valid = 0 <= axis < dims
        return valid, f"Op has ofm_dimensions={dims} and axis attribute is: {axis}"

    @staticmethod
    def constraint_matching_dimensionality(op):
        "All Input dimensionalities must match OFM dimensionality"
        valid = True
        extra = []
        ofm_dim = len(op.ofm.shape)
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            dim = len(tens.shape)
            if dim != ofm_dim:
                valid = False
                extra.append(f"Tensor '{tens.name}' has dimension: {dim}")
        extra = ", ".join(extra)
        return valid, f"Op has ofm_dimension={ofm_dim} and the list of mismatching inputs are: {extra}"

    @staticmethod
    def constraint_valid_dimensions(op):
        "All Input dimensions must match OFM dimension in all axes except the one defined by the axis attribute"
        valid = True
        extra = []
        ofm_shape = op.ofm.shape
        ofm_dim = len(ofm_shape)
        axis = op.attrs["axis"]
        axis += ofm_dim if axis < 0 else 0
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if any(tens.shape[dim] != ofm_shape[dim] for dim in range(ofm_dim) if dim != axis):
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        extra = ", ".join(extra)
        return valid, f"Op has axis={axis}, ofm_shape={ofm_shape} and the list of mismatching inputs are: {extra}"

    @staticmethod
    def constraint_stridedslice_input_count(op):
        "Exactly 4 Input tensors are required"
        inputs = len(op.inputs)
        valid = inputs == 4
        return valid, f"Op has {inputs} inputs"

    @staticmethod
    def constraint_pad_input_count(op):
        "Number of input tensors must be exactly 2"
        inputs = len(op.inputs)
        valid = inputs == 2
        return valid, f"Op has {inputs} inputs"

    @staticmethod
    def constraint_pad_constant(op):
        "The padding tensor must be constant"
        pad_tensor = op.inputs[1].values
        valid = pad_tensor is not None
        return valid, f"Op has non-constant padding tensor: {op.inputs[1].values}"

    @staticmethod
    def constraint_stridedslice_inputs_const(op):
        "Begin, End and Stride Input tensors must be constant"
        valid = True
        extra = []
        _, begin, end, strides = op.inputs
        if begin.values is None:
            valid = False
            extra.append(f"Begin tensor '{begin.name}'")
        if end.values is None:
            valid = False
            extra.append(f"End tensor '{end.name}'")
        if strides.values is None:
            valid = False
            extra.append(f"Stride tensor '{strides.name}'")
        extra = ", ".join(extra)
        return valid, f"Op has non-constant tensors: {extra}"

    @staticmethod
    def constraint_ellipsis_mask(op):
        "ellipsis_mask must be 0"
        ellipsis = op.attrs["ellipsis_mask"]
        valid = ellipsis == 0
        return valid, f"Op has ellipsis mask as: {ellipsis}"

    @staticmethod
    def constraint_axis_masks(op):
        "new_axis_mask and shrink_axis_mask cannot both be set"
        new_axis = op.attrs["new_axis_mask"]
        shrink_axis = op.attrs["shrink_axis_mask"]
        valid = (new_axis == 0) or (shrink_axis == 0)
        return valid, f"Op has new_axis_mask={new_axis} and shrink_axis_mask={shrink_axis}"

    @staticmethod
    def constraint_slice_ranges(op):
        "Slice 'end' values must be greater than 'begin' values"
        ifm, begin, end, _ = op.inputs
        # Calculate offset begin/end
        offset_begin = get_slice_offsets(ifm.shape, begin, op.attrs["begin_mask"], is_begin=True)
        offset_end = get_slice_offsets(ifm.shape, end, op.attrs["end_mask"], is_begin=False)
        # Check "end - begin" doesn't result in any zero or negative elements
        valid = all((e - b) > 0 for b, e in zip(offset_begin, offset_end))
        return valid, f"Op has begin_values={begin.values} and end_values={end.values}"

    @staticmethod
    def constraint_matching_inputs_types(op):
        "Both Input data types must match"
        ifm_dtype = op.ifm.dtype
        ifm2_dtype = op.ifm2.dtype
        valid = ifm_dtype == ifm2_dtype
        return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"

    @staticmethod
    def constraint_matching_signed(op):
        "For IFM that are signed, OFM must also be signed"
        valid = True
        ifm_dtype = op.ifm.dtype
        ofm_dtype = op.ofm.dtype
        if ifm_dtype.type & BaseType.Signed:
            valid = bool(ofm_dtype.type & BaseType.Signed)
        return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_unsigned_valid(op):
        "For IFM that are unsigned, OFM must either be the same type or int32"
        valid = True
        ifm_dtype = op.ifm.dtype
        ofm_dtype = op.ofm.dtype
        if ifm_dtype.type & BaseType.Unsigned:
            valid = (ifm_dtype == ofm_dtype) or (ofm_dtype == DataType.int32)
        return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_input_8bit(op):
        "IFM must be int8 or uint8"
        ifm_dtype = op.ifm.dtype
        valid = (ifm_dtype == DataType.int8) or (ifm_dtype == DataType.uint8)
        return valid, f"Op has ifm_dtype={ifm_dtype}"

    @staticmethod
    def constraint_matching_either_shapes(op):
        "At least one Input's shape must match the OFM's shape"
        ifm_shape = op.ifm.shape
        ifm2_shape = op.ifm2.shape if op.ifm2 else None
        ofm_shape = op.ofm.shape
        valid = (ifm_shape == ofm_shape) or (ifm2_shape == ofm_shape)
        return valid, f"Op has ifm_shape={ifm_shape}, ifm2_shape={ifm2_shape} and ofm_shape={ofm_shape}"

    @staticmethod
    def constraint_alpha_valid(op):
        "Alpha must not be negative"
        alpha = op.attrs["alpha"]
        valid = alpha >= 0
        return valid, f"Op has alpha={alpha}"

    @staticmethod
    def constraint_keep_dim_ifm_ofm(op):
        "The IFM and OFM must have the same number of dimensions if keep_num_dims is set to true"
        valid = True
        if op.attrs.get("keep_num_dims"):
            valid = len(op.ifm.shape) == len(op.ofm.shape)
        return valid, f"Op has ifm shape={op.ifm.shape} and ofm shape={op.ofm.shape}"

    @staticmethod
    def constraint_mean_input_dims(op):
        "Input tensor must be at least 2D"
        dims = len(op.inputs[0].shape)
        return 2 <= dims <= 4, f"Input is {dims}D"

    @staticmethod
    def constraint_mean_axis(op):
        "Axis indices must correspond to height and width axes"
        dims = len(op.inputs[0].shape)
        axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
        if dims == 2 or dims == 3:
            valid = axis in (0, 1, [0], [1], [0, 1], [1, 0])
        elif dims == 4:
            valid = axis in (1, 2, [1], [2], [1, 2], [2, 1])
        return valid, f"Axis is {axis}"

    @staticmethod
    def constraint_matching_in_out_quant(op):
        "Input and output quantisation must match."
        if not check_quantized_tens_scaling_equal(op.ifm, op.ofm):
            return False, "IFM and OFM quantisation parameters are not equal."
        return True, "IFM and OFM quantisation parameters matches."


def tflite_semantic_checker(nng):
    semantic_checker = TFLiteSemantic()
    for sg in nng.subgraphs:
        for op in sg.get_all_ops():
            op.run_on_npu = semantic_checker.is_operator_semantic_valid(op)
    return nng