aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tensor_allocation.py
blob: 94aa60884914a8f73f98eeafdc629732bad88084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Description:
# Wrapping function to do tensor address allocation. That is, assigning addresses to tensors based on what has been
# worked out from the allowable overlaps that are calculated by the live range analysis.

from . import live_range
from .tensor import MemArea
import math
from . import numeric_util
import numpy as np
from .nn_graph import TensorAllocator, PassPlacement

from .greedy_allocation import allocate_live_ranges as greedy_allocate_live_ranges


def linear_allocate_live_ranges(live_ranges, alloc_granularity=256):
    total_sz = 0
    allocated_tensors = []

    # just assign increasing addresses
    for tens, lr in live_ranges.ranges.items():
        if tens in allocated_tensors:
            continue

        lr.set_address(total_sz)
        allocated_tensors += lr.tensors
        total_sz += numeric_util.round_up(int(math.ceil(lr.size)), alloc_granularity)

    return total_sz


def mark_sram_used_for_cascaded_passes(sg, lrs):
    end_pos = max(ps.time for ps in sg.cascaded_passes) + 2
    mem_usage = np.zeros(end_pos, dtype=np.int64)

    for tens, rng in lrs.ranges.items():
        storage_size = tens.storage_size()
        mem_usage[rng.start_time : rng.end_time] += storage_size

    for cps in sg.cascaded_passes:
        sram_used = max(mem_usage[cps.time], mem_usage[cps.time + 1])
        cps.sram_used = sram_used
        for ps in cps.passes:
            ps.sram_used = sram_used


def print_allocation(lrs, mem_area, sg, verbose_allocation, show_minimum_possible_allocation):
    if verbose_allocation:
        if mem_area == MemArea.Sram:
            print("allocation for", mem_area, "- non-constant tensors in Cpu and Npu subgraphs")
        else:
            print("allocation for", mem_area, "- constant tensors in", sg.placement.name, "subgraph(s)")
        for start_time, start, end, name, end_time in sorted(
            (
                lr.start_time,
                tens.address,
                tens.address + int(math.ceil(tens.storage_size())),
                tens.name + " " + str(tens.purpose),
                lr.end_time,
            )
            for tens, lr in lrs.ranges.items()
        ):
            name = name.replace("\x00", "")
            print("%9d: %#12x - %#12x: %3d - %3d %s" % ((end - start), start, end, start_time, end_time, name))
        print()

    if show_minimum_possible_allocation and mem_area == MemArea.Sram:
        min_possible_allocation = max(cps.sram_used for cps in sg.cascaded_passes)
        print(
            "Min possible allocation %d bytes / %.1f KB / %.1f MB"
            % (min_possible_allocation, min_possible_allocation / 1024, min_possible_allocation / 1024 / 1024)
        )


def allocate_tensors(
    nng,
    sg,
    arch,
    mem_area,
    use_ifm_ofm_overlap=True,
    tensor_allocator=TensorAllocator.Greedy,
    verbose_allocation=False,
    show_minimum_possible_allocation=False,
    lr_graph=None,
):
    ignore_subgraph_input_output_tensors = False
    lrs = live_range.extract_live_ranges_from_cascaded_passes(
        sg,
        mem_area,
        mark_output_tensors_overlapping_with_input_tensors=False,
        use_ifm_ofm_overlap=use_ifm_ofm_overlap,
        ignore_subgraph_input_output_tensors=ignore_subgraph_input_output_tensors,
        lr_graph=lr_graph,
    )

    if lrs.ranges:
        tens_alloc = tensor_allocator
        if tens_alloc == TensorAllocator.Greedy:
            total_sz = greedy_allocate_live_ranges(sg, arch, lrs, mem_area, verbose_allocation)
        elif tens_alloc == TensorAllocator.LinearAlloc:
            total_sz = linear_allocate_live_ranges(lrs)
        else:
            assert 0

        sg.memory_used[mem_area] = total_sz

        nng.total_size[mem_area] = nng.total_size.get(mem_area, 0) + sum(tens.storage_size() for tens in lrs.ranges)
        nng.total_elements[mem_area] = nng.total_elements.get(mem_area, 0) + sum(tens.elements() for tens in lrs.ranges)

        print_allocation(lrs, mem_area, sg, verbose_allocation, show_minimum_possible_allocation)

        if mem_area == MemArea.Sram:
            # Mark Sram usage for all subgraphs
            for sg_ in nng.subgraphs:
                mark_sram_used_for_cascaded_passes(sg_, lrs)

    if sg == nng.get_root_subgraph():
        nng.memory_used = sg.memory_used
        for mem_area in nng.total_elements.keys():
            try:
                nng.bits_per_element[mem_area] = nng.total_size[mem_area] * 8 / nng.total_elements[mem_area]
            except ZeroDivisionError:
                nng.bits_per_element[mem_area] = 0.0