aboutsummaryrefslogtreecommitdiff
path: root/ethosu/tensor_allocator/search_allocator.cpp
blob: 5c7492b4895590abdd3011b0f57906e96f06195c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 * Copyright (c) 2020 Arm Limited. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Description:
 * Implementation of the search-based allocator.
 */

#include <algorithm>
#include <cstdint>
#include <set>
#include <vector>

#include "search_allocator.h"

SearchAllocator::SearchAllocator(const std::vector<LiveRange> &live_ranges, uint32_t size_limit) {
    lrs = live_ranges;
    uint32_t max_end_time = 0;
    for (size_t i = 0; i < lrs.size(); ++i) {
        auto &lr = lrs[i];
        lr.id = static_cast<int>(i);
        max_end_time = std::max(max_end_time, lr.end_time);
    }
    lrs_at_time.resize(max_end_time + 1);
    size_at_time.resize(max_end_time + 1);
    neighbours.resize(lrs.size());
    // Calculate which live ranges are active at every timestamp
    for (size_t t = 0; t <= max_end_time; ++t) {
        lrs_at_time[t].clear();
    }
    for (auto &lr : lrs) {
        for (auto t = lr.start_time; t <= lr.end_time; ++t) {
            lrs_at_time[t].push_back(&lr);
        }
    }
    min_required_size = 0;
    for (size_t t = 0; t <= max_end_time; ++t) {
        // Calculate minimum needed size at each timestamp
        uint32_t size_at_t = 0;
        for (auto &lr : lrs_at_time[t]) {
            size_at_t += lr->size;
        }
        size_at_time[t] = size_at_t;
        min_required_size = std::max(size_at_t, min_required_size);
        // Calculate all neighbours
        for (size_t i = 0; i < lrs_at_time[t].size(); ++i) {
            auto lr1 = lrs_at_time[t][i];
            auto &nb1 = neighbours[lr1->id];
            for (size_t j = i + 1; j < lrs_at_time[t].size(); ++j) {
                auto lr2 = lrs_at_time[t][j];
                if (find(nb1.begin(), nb1.end(), lr2) == nb1.end()) {
                    nb1.push_back(lr2);
                    neighbours[lr2->id].push_back(lr1);
                }
            }
        }
    }
    target_size = std::max(min_required_size, size_limit);
    // Calculate the urgency of each live range
    lr_urgency.resize(lrs.size());
    for (size_t i = 0; i < lrs.size(); ++i) {
        auto &lr = lrs[i];
        uint32_t urgency = 0;
        for (size_t t = lr.start_time; t <= lr.end_time; ++t) {
            urgency = std::max(size_at_time[t], urgency);
        }
        lr_urgency[i] = urgency;
    }
    best_size = UINT32_MAX;
}

uint32_t SearchAllocator::allocate(std::vector<uint32_t> &output) {
    output.clear();
    nr_iterations = 0;
    std::vector<size_t> indices;
    // Initial solution, using a heuristic allocator
    for (size_t i = 0; i < lrs.size(); ++i) {
        indices.push_back(i);
    }
    sort_indices_on_prio(indices);
    // Allocate the initial solution
    best_size = UINT32_MAX;
    best_size = allocate_indices(indices);
    if (best_size <= target_size) {
        // The heuristic allocation returned an optimal solution.
        // No need to search.
    } else {
        // Try to improve the heuristic allocation
        search(indices, best_size, MAX_ITERATIONS);
    }
    output.clear();
    for (auto &lr : lrs) {
        output.push_back(lr.address);
    }
    return best_size;
}

void SearchAllocator::allocate_lr(LiveRange &lr) const {
    uint32_t address = 0;
    int predecessor = NO_PREDECESSOR;
    bool fits = false;
    while (!fits) {
        fits = true;
        // Find neighbours that overlap with address
        for (auto lr2_p : neighbours[lr.id]) {
            if (lr2_p->address == NOT_ALLOCATED || lr2_p->end_address <= address) {
                continue;
            }
            if (lr2_p->overlaps(address, lr.size)) {
                // Overlap found; increase address
                fits = false;
                address = lr2_p->end_address;
                predecessor = lr2_p->id;
            }
        }
    }
    lr.address = address;
    lr.end_address = address + lr.size;
    lr.predecessor = predecessor;
}

uint32_t SearchAllocator::allocate_indices(const std::vector<size_t> &indices) {
    ++nr_iterations;
    std::vector<size_t> count(indices.size());
    for (auto &lr : lrs) {
        lr.address = NOT_ALLOCATED;
    }
    uint32_t size = 0;
    for (size_t turn = 0; size <= best_size && turn < indices.size(); ++turn) {
        auto &lr = lrs[indices[turn]];
        allocate_lr(lr);
        lr.turn = turn;
        size = std::max(size, lr.end_address);
    }
    return size;
}

void SearchAllocator::sort_indices_on_prio(std::vector<size_t> &indices) const {
    std::sort(indices.begin(), indices.end(),
        [this] (size_t const& a, size_t const& b) {
            if (lr_urgency[a] != lr_urgency[b]) {
                return lr_urgency[a] > lr_urgency[b];
            }
            auto &lr1 = lrs[a];
            auto &lr2 = lrs[b];
            auto duration1 = lr1.end_time - lr1.start_time;
            auto duration2 = lr2.end_time - lr2.start_time;
            if (duration1 != duration2) {
                return duration1 > duration2;
            }
            if (lr1.start_time != lr2.start_time) {
                return lr1.start_time < lr2.start_time;
            }
            if (lr1.size != lr2.size) {
                return lr1.size > lr2.size;
            }
            return lr1.id < lr2.id;
        });
}

void SearchAllocator::add_predecessor_turns(std::set<size_t> &turns, const LiveRange &lr) const {
    turns.insert(lr.turn);
    int id = lr.id;
    while (lrs[id].predecessor != NO_PREDECESSOR) {
        id = lrs[id].predecessor;
        turns.insert(lrs[id].turn);
    }
}

void SearchAllocator::attempt_bottleneck_fix(std::vector<size_t> &indices) {
    // Find the bottleneck
    LiveRange *max_lr = &lrs[0];
    for (auto &lr : lrs) {
        if (lr.end_address > max_lr->end_address) {
            max_lr = &lr;
        }
    }
    // Find all live ranges that affected the placement of the bottleneck live range.
    // This consists of two types of live ranges:
    // - direct neighbours of the bottleneck live range
    // - direct and indirect predecessors of these neighbours + bottleneck
    // The turns at which these live ranges were allocated are put in the turns vector.
    std::set<size_t> turns;
    add_predecessor_turns(turns, *max_lr);
    for (auto lr_p : neighbours[max_lr->id]) {
        add_predecessor_turns(turns, *lr_p);
    }
    // Non-direct neighbours that interfere with the allocation of the bottleneck are the
    // immediate cause for gaps in the allocation, and are selected with higher probability.
    std::vector<size_t> turn_list;
    std::vector<size_t> non_nb_turn_list;
    for (auto turn : turns) {
        turn_list.push_back(turn);
        auto &lr = lrs[indices[turn]];
        if (!max_lr->is_neighbour(lr)) {
            non_nb_turn_list.push_back(turn);
        }
    }
    size_t ix1;
    if (rng() % 100 < 30 && !non_nb_turn_list.empty()) {
        // Pick a live range from the "non-neighbour list"
        ix1 = non_nb_turn_list[rng() % non_nb_turn_list.size()];
    } else {
        // Pick any affecting live range.
        ix1 = turn_list[rng() % turn_list.size()];
    }
    // Note: turn_list has always at least 2 elements for bottlenecks
    size_t ix2 = turn_list[rng() % (turn_list.size() - 1)];
    if (ix1 == ix2) {
        ix2 = turn_list[turn_list.size() - 1];
    }
    // Swap indices
    std::swap(indices[ix1], indices[ix2]);
}

void SearchAllocator::search(std::vector<size_t> &indices, uint32_t initial_size, int iterations) {
    std::vector<size_t> best_indices = indices;
    std::vector<LiveRange> best_lrs = lrs;
    for (int i = 0; i < iterations; ++i) {
        // Reorder the indices
        attempt_bottleneck_fix(indices);
        // Allocate the reordered indices and check if it gave an improvement
        auto new_size = allocate_indices(indices);
        if (new_size <= best_size) {
            // The new allocation produced a new best result; remember it
            best_size = new_size;
            best_indices = indices;
            best_lrs = lrs;
            if (best_size <= target_size) {
                // Target reached; stop
                return;
            }
        } else {
            // The new allocation produced worse result; undo the change
            indices = best_indices;
            lrs = best_lrs;
        }
    }
    lrs = best_lrs;
}

uint32_t allocate(const std::vector<uint32_t> &input, int available_size, std::vector<uint32_t> &output) {
    // Convert input to vector of live ranges
    std::vector<LiveRange> lrs;
    for (size_t i = 0; i < input.size(); i += 3) {
        LiveRange lr;
        lr.start_time = input[i];
        lr.end_time = input[i+1];
        lr.size = input[i+2];
        lrs.push_back(lr);
    }
    SearchAllocator allocator(lrs, available_size);
    return allocator.allocate(output);
}