# SPDX-FileCopyrightText: Copyright 2021-2023 Arm Limited and/or its affiliates # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Description: # The TFLiteSemantic class which is a collection of TensorFlow lite model semantic checks. from collections import defaultdict import numpy as np from .data_type import BaseType from .data_type import DataType from .numeric_util import is_integer from .operation import Op from .supported_operators_util import docstring_format_args from .supported_operators_util import list_formatter from .tensor import check_quantized_tens_scaling_equal from .tensor import shape_num_elements from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN from .tflite_mapping import optype_to_builtintype def _optype_formatter(op_list): # Convert internal op types to external names output = map(optype_to_builtintype, op_list) # Remove UNKNOWNs output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN) return list_formatter(output) class TFLiteSemantic: # Categorised lists of operators convolution_ops = set( ( Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D, ) ) depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,)) transpose_convolution_ops = set((Op.Conv2DBackpropInput,)) convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops max_pooling_ops = Op.op_set(Op.is_maxpool_op) avg_pooling_ops = Op.op_set(Op.is_avgpool_op) pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op) binary_elem_wise_min_max_ops = set( ( Op.Minimum, Op.Maximum, ) ) binary_elem_wise_shift_ops = set( ( Op.SHL, Op.SHR, ) ) binary_elem_wise_add_mul_sub = set( ( Op.Add, Op.Mul, Op.Sub, ) ) binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops shapeless_input_ops = binary_elem_wise_main_ops | set( (Op.Split, Op.SplitV, Op.Mean, Op.ExpandDims, Op.Quantize, Op.ArgMax) ) reshape_ops = set( ( Op.Reshape, Op.QuantizedReshape, Op.Squeeze, Op.ExpandDims, ) ) def __init__(self): # Setup the generic constraints. Note: the order matters self.generic_constraints = [] self.generic_constraints.append(TFLiteSemantic.constraint_attributes_specified) self.generic_constraints.append(TFLiteSemantic.constraint_tens_no_dynamic) self.generic_constraints.append(TFLiteSemantic.constraint_tens_defined_shape) self.generic_constraints.append(TFLiteSemantic.constraint_tens_output_scalar) self.generic_constraints.append(TFLiteSemantic.constraint_tens_input_scalar) self.generic_constraints.append(TFLiteSemantic.constraint_tens_shape_size) self.generic_constraints.append(TFLiteSemantic.constraint_tens_quant_none_check) self.generic_constraints.append(TFLiteSemantic.constraint_tens_quant_scale) self.generic_constraints.append(TFLiteSemantic.constraint_quant_scale_inf) self.generic_constraints.append(TFLiteSemantic.constraint_none_const_tensors) # Setup specific constraints. Note: the order matters self.specific_constraints = defaultdict(list) # Conv-like checks: for op_type in TFLiteSemantic.convolution_like_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_stride_type) if op_type in TFLiteSemantic.convolution_ops: # Only Conv has groups self.specific_constraints[op_type].append(TFLiteSemantic.constraint_conv_groups_ifm_depth) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_conv_groups_num_filters) if op_type not in TFLiteSemantic.transpose_convolution_ops: # Transpose Conv does not contain dilation self.specific_constraints[op_type].append(TFLiteSemantic.constraint_dilation_type) # Pooling checks: for op_type in TFLiteSemantic.pooling_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_stride_type) # AVG pooling specific checks: for op_type in TFLiteSemantic.avg_pooling_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_filter_type) # MAX pooling specific checks: for op_type in TFLiteSemantic.max_pooling_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_filter_type) # Concat specific checks: for op_type in (Op.Concat, Op.ConcatTFLite): self.specific_constraints[op_type].append(TFLiteSemantic.constraint_axis_exists) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_axis_valid) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_dimensionality) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_valid_dimensions) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_valid_dimensions_axis) # Element-wise checks: for op_type in TFLiteSemantic.elem_wise_main_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_either_shapes) # Unary specific checks: for op_type in TFLiteSemantic.unary_elem_wise_main_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types) # Binary Min/Max specific checks: for op_type in TFLiteSemantic.binary_elem_wise_min_max_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types) # Binary Add/Mul/Sub specific checks: for op_type in TFLiteSemantic.binary_elem_wise_add_mul_sub: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_inputs_types) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_signed) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_unsigned_valid) # Ops reshaping dimensions: Reshape, Squeeze and ExpandDims for op_type in TFLiteSemantic.reshape_ops: self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_quant) self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_elements) # Softmax specific checks: self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_matching_shapes) self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_matching_in_out_types) self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_beta_value_range) # Split specific checks: self.specific_constraints[Op.Split].append(TFLiteSemantic.constraint_split_axis) self.specific_constraints[Op.Split].append(TFLiteSemantic.constraint_split_num_splits) # SplitV specific checks: self.specific_constraints[Op.SplitV].append(TFLiteSemantic.constraint_splitv_inferred) # StridedSlice specific checks: self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_stridedslice_input_count) self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_stridedslice_inputs_const) self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_ellipsis_mask) self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_axis_masks) self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_slice_ranges) # FullyConnected specific checks: self.specific_constraints[Op.FullyConnected].append(TFLiteSemantic.constraint_fc_output_2d) self.specific_constraints[Op.FullyConnected].append(TFLiteSemantic.constraint_keep_dim_ifm_ofm) # Pad specific checks: self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_input_count) self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_constant) self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_output_shape) # HardSwish specific checks: self.specific_constraints[Op.HardSwish].append(TFLiteSemantic.constraint_input_8bit) self.specific_constraints[Op.HardSwish].append(TFLiteSemantic.constraint_matching_in_out_types) # Mean specific checks: self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_mean_input_dims) self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_mean_axis) # ArgMax specific checks: self.specific_constraints[Op.ArgMax].append(TFLiteSemantic.constraint_input_8bit) self.specific_constraints[Op.ArgMax].append(TFLiteSemantic.constraint_argmax_output) # UnidirectionalSequenceLstm specific checks: self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_input_signed) self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_matching_in_out_types) self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_dimensions) self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_inputs) self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_intermediates) self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_variables) # Exp specific checks self.specific_constraints[Op.Exp].append(TFLiteSemantic.constraint_input_signed) def is_operator_semantic_valid(self, op): ext_type = optype_to_builtintype(op.type) if op.type in (Op.Placeholder, Op.SubgraphInput, Op.Const): return True # Generic constraints list filtered out to exclude certain constraints depending on op.type filtered_generic_constraints = [] for constraint in self.generic_constraints: # Check constraint not in dictionary otherwise return empty array if constraint not in self.get_generic_constraint_exclude_list().get(op.type, []): filtered_generic_constraints.append(constraint) for constraint in filtered_generic_constraints + self.specific_constraints[op.type]: valid, extra = constraint(op) if not valid: print( f"Warning: Unsupported TensorFlow Lite semantics for {ext_type} '{op.name}'. Placing on CPU instead" ) print(f" - {constraint.__doc__}") if extra: print(f" {extra}") return False return True @staticmethod def get_generic_constraint_exclude_list(): # Not all generic constraints can be applied to each operator generic_constraints_exclude_list = { Op.Shape: [ TFLiteSemantic.constraint_tens_quant_none_check, ], Op.Quantize: [ TFLiteSemantic.constraint_tens_no_dynamic, TFLiteSemantic.constraint_tens_output_scalar, ], Op.ArgMax: [ TFLiteSemantic.constraint_tens_quant_none_check, ], } return generic_constraints_exclude_list @staticmethod def constraint_none_const_tensors(op): "Constant tensors should not have NoneType-values" valid = True extra = "" for tens in filter(None, op.inputs): if len(tens.ops) > 0 and tens.ops[0].type == Op.Const and tens.values is None: valid = False extra = str(tens.name) return valid, f"Unexpected None value for constant tensor: {extra}" @staticmethod def constraint_attributes_specified(op): "All required operator attributes must be specified" # operators that have been created internally (i.e. not created as part of reading an input network) may not # have the read error attribute attribute_read_error = op.attrs.get("attribute_read_error", []) valid = len(attribute_read_error) == 0 extra = ", ".join(attribute_read_error) return valid, f"Op has missing attributes: {extra}" @staticmethod def constraint_tens_no_dynamic(op): "Input(s) and Output tensors must not be dynamic" valid = True extra = [] tensors = [tens for tens in op.inputs + op.outputs if tens] for tens in tensors: if (tens.shape == []) and (tens.values is None): valid = False extra.append(tens.name) extra = ", ".join(extra) return valid, f"Op has dynamic tensor(s): {extra}" @staticmethod def constraint_tens_defined_shape(op): "Input(s) and Output tensors must have a defined shape" valid = True extra = [] tensors = [tens for tens in op.inputs + op.outputs if tens] for tens in tensors: if not tens.has_fully_defined_shape(): valid = False extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}") return valid, ", ".join(extra) @staticmethod def constraint_tens_output_scalar(op): "Output tensors cannot be scalar" ofm = op.ofm valid = ofm.shape != [] return valid, f"Output Tensor '{ofm.name}' is scalar" @classmethod @docstring_format_args([_optype_formatter(shapeless_input_ops)]) def constraint_tens_input_scalar(cls, op): "Scalar Input tensors are only valid for op type: {}" valid = True extra = [] tensors = [tens for tens in op.inputs if tens] for tens in tensors: if (tens.shape == []) and (op.type not in cls.shapeless_input_ops): valid = False extra.append(tens.name) extra = ", ".join(extra) return valid, f"Op has scalar input tensor(s): {extra}" @staticmethod def constraint_tens_shape_size(op): "Input(s) and Output tensors must not be greater than 4D" valid = True extra = [] tensors = [tens for tens in op.inputs + op.outputs if tens] for tens in tensors: if len(tens.shape) > 4: valid = False extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}") return valid, ", ".join(extra) @staticmethod def constraint_tens_quant_none_check(op): "Input(s), Output and Weight tensors must have quantization parameters" valid = True extra = [] tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens] for tens in tensors: if tens.quantization is None: valid = False extra.append(tens.name) extra = ", ".join(extra) return valid, f"Op has tensors with missing quantization parameters: {extra}" @staticmethod def constraint_tens_quant_scale(op): "Input(s), Output and Weight tensors with quantization scales must be finite" valid = True extra = [] tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens] for tens in tensors: if ( tens.quantization and tens.quantization.scale_f32 is not None and np.isinf(tens.quantization.scale_f32).any() ): valid = False extra.append(f"Tensor '{tens.name}' has quantization scale: {tens.quantization.scale_f32}") return valid, ", ".join(extra) @staticmethod def constraint_fc_output_2d(op): """The output tensor(s) must have 2D shape""" valid = op.ifm.get_shape_as_2d(op.weights.shape[-2]) is not None extra = f"Op has non-2D output tensor '{op.ofm.name}'" if not valid else "" return valid, extra @staticmethod def constraint_stride_type(op): "Stride values for both width and height must be integer types" w, h = op.get_kernel_stride() valid = is_integer(w) and is_integer(h) return valid, f"Op has stride WxH as: {repr(w)}x{repr(h)}" @staticmethod def constraint_conv_groups_ifm_depth(op): """IFM depth must be a whole multiple of the filter kernel depth""" ifm_depth = op.ifm.shape[-1] # nhwc kernel_ic = op.weights.shape[-2] # hwio num_conv_groups = ifm_depth // kernel_ic if ifm_depth % kernel_ic == 0: op.attrs["num_conv_groups"] = num_conv_groups valid = True else: valid = False return valid, f"IFM depth = {ifm_depth} and filter kernel depth = {kernel_ic}" @staticmethod def constraint_conv_groups_num_filters(op): """Number of filter kernels must be equally divisible by the number of convolution groups""" ifm_depth = op.ifm.shape[-1] # nhwc kernel_ic = op.weights.shape[-2] # hwio kernel_oc = op.weights.shape[-1] # hwio num_conv_groups = ifm_depth // kernel_ic if kernel_oc % num_conv_groups == 0: valid = True else: valid = False return valid, f"Filter kernels = {kernel_oc} and convolution groups = {num_conv_groups}" @staticmethod def constraint_dilation_type(op): "Dilation factor values for both width and height must be integer types" w, h = op.get_kernel_dilation() valid = is_integer(w) and is_integer(h) return valid, f"Op has dilation factor WxH as: {repr(w)}x{repr(h)}" @staticmethod def constraint_quant_scale_inf(op): "Input and Output tensors must have quantization scales that fit within float32 precision" if op.ofm is not None and op.ofm.is_quantized(): ofm_scale = op.ofm.quantization.scale_f32 if np.any(ofm_scale < np.finfo(np.float32).tiny): return ( False, f"The quantization scale of the output tensor is {ofm_scale}, " + f"minimum supported is: {np.finfo(np.float32).tiny}", ) if op.ifm is not None and op.ifm.is_quantized(): ifm_scale = op.ifm.quantization.scale_f32 if np.any(np.isinf(ifm_scale / ofm_scale)): return ( False, f"IFM scale divided by OFM scale is infinite, ifm_scale={ifm_scale} ofm_scale={ofm_scale}", ) return True, "Op's quantization is ok" @staticmethod def constraint_matching_in_out_types(op): "IFM and OFM data types must match" ifm_dtype = op.ifm.dtype ofm_dtype = op.ofm.dtype valid = ifm_dtype == ofm_dtype return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}" @staticmethod def constraint_beta_value_range(op): "Beta value needs to be positive" beta = op.attrs.get("beta", 1.0) valid = beta >= 0 return valid, f"Op has beta={beta}" @staticmethod def constraint_filter_type(op): "Kernel filter values for both width and height must be integer types" w = op.kernel.width h = op.kernel.height valid = is_integer(w) and is_integer(h) return valid, f"Op has kernel filter WxH as: {repr(w)}x{repr(h)}" @staticmethod def constraint_matching_shapes(op): "IFM and OFM shapes must match" ifm_shape = op.ifm.shape ofm_shape = op.ofm.shape valid = ifm_shape == ofm_shape return valid, f"Op has ifm_shape={ifm_shape} and ofm_shape={ofm_shape}" @staticmethod def constraint_split_axis(op): "Axis value must be in the range [-RANK(IFM) to +RANK(IFM))" axis_tens = op.inputs[0] input_tens = op.inputs[1] dims = len(input_tens.shape) # handle axis being a scalar or 1-D array if axis_tens.values.ndim == 0: axis = int(axis_tens.values) else: axis = int(axis_tens.values[0]) axis += dims if axis < 0 else 0 valid = 0 <= axis < dims return valid, f"Op has ifm_dimensions={dims} and axis value is: {axis}" @staticmethod def constraint_split_num_splits(op): "Axis must be divisible by number of splits" num_splits = op.attrs.get("num_splits") axis_tens = op.inputs[0] input_tens = op.inputs[1] dims = len(input_tens.shape) # handle axis being a scalar or 1-D array if axis_tens.values.ndim == 0: axis = int(axis_tens.values) else: axis = int(axis_tens.values[0]) axis += dims if axis < 0 else 0 valid = input_tens.shape[axis] % num_splits == 0 return valid, f"Op has ifm shape={input_tens.shape} axis={axis} num_splits={num_splits}" @staticmethod def constraint_splitv_inferred(op): "Only one size is allowed to be inferred" sizes = op.inputs[1].values valid = np.count_nonzero(sizes == -1) <= 1 return valid, f"Op has multiple inferred sizes (-1): {sizes}" @staticmethod def constraint_axis_exists(op): "Axis attribute must exist" axis = op.attrs.get("axis") valid = axis is not None return valid, f"Op has axis={axis}" @staticmethod def constraint_axis_valid(op): "Axis attribute must be in the range [0, )" dims = len(op.ofm.shape) axis = op.attrs["axis"] axis += dims if axis < 0 else 0 valid = 0 <= axis < dims return valid, f"Op has ofm_dimensions={dims} and axis attribute is: {axis}" @staticmethod def constraint_matching_dimensionality(op): "All Input dimensionalities must match OFM dimensionality" valid = True extra = [] ofm_dim = len(op.ofm.shape) tensors = [tens for tens in op.inputs if tens] for tens in tensors: dim = len(tens.shape) if dim != ofm_dim: valid = False extra.append(f"Tensor '{tens.name}' has dimension: {dim}") extra = ", ".join(extra) return valid, f"Op has ofm_dimension={ofm_dim} and the list of mismatching inputs are: {extra}" @staticmethod def constraint_valid_dimensions(op): "All Input dimensions must match OFM dimension in all axes except the one defined by the axis attribute" valid = True extra = [] ofm_shape = op.ofm.shape ofm_dim = len(ofm_shape) axis = op.attrs["axis"] axis += ofm_dim if axis < 0 else 0 tensors = [tens for tens in op.inputs if tens] for tens in tensors: if any(tens.shape[dim] != ofm_shape[dim] for dim in range(ofm_dim) if dim != axis): valid = False extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}") extra = ", ".join(extra) return valid, f"Op has axis={axis}, ofm_shape={ofm_shape} and the list of mismatching inputs are: {extra}" @staticmethod def constraint_valid_dimensions_axis(op): """The size of the OFM axis must match the sum of all IFM axis defined by the axis attribute""" valid = True extra = [] ofm_shape = op.ofm.shape ofm_dim = len(ofm_shape) axis = op.attrs["axis"] axis += ofm_dim if axis < 0 else 0 sum_ifm_axis = 0 tensors = [tens for tens in op.inputs if tens] for tens in tensors: sum_ifm_axis += tens.shape[axis] extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}") valid = sum_ifm_axis == ofm_shape[axis] extra = ", ".join(extra) return valid, f"Op has axis={axis}, ofm_shape={ofm_shape} and the list of mismatching inputs are: {extra}" @staticmethod def constraint_stridedslice_input_count(op): "Exactly 4 Input tensors are required" inputs = len(op.inputs) valid = inputs == 4 return valid, f"Op has {inputs} inputs" @staticmethod def constraint_pad_input_count(op): "Number of input tensors must be exactly 2" inputs = len(op.inputs) valid = inputs == 2 return valid, f"Op has {inputs} inputs" @staticmethod def constraint_pad_constant(op): "The padding tensor must be constant" pad_tensor = op.inputs[1].values valid = pad_tensor is not None return valid, f"Op has non-constant padding tensor: {op.inputs[1].values}" @staticmethod def constraint_pad_output_shape(op): "Shape of output tensor must equal to size of input tensor plus padding" input_shape = op.inputs[0].shape expected_output_shape = op.outputs[0].shape pad_tensor = op.inputs[1].values actual_output_shape = input_shape + pad_tensor.T[0] + pad_tensor.T[1] valid = np.array_equal(actual_output_shape, expected_output_shape) return valid, f"Op has wrong output tensor shape: {expected_output_shape}, has shape: {actual_output_shape}" @staticmethod def constraint_stridedslice_inputs_const(op): "Begin, End and Stride Input tensors must be constant" valid = True extra = [] _, begin, end, strides = op.inputs if begin.values is None: valid = False extra.append(f"Begin tensor '{begin.name}'") if end.values is None: valid = False extra.append(f"End tensor '{end.name}'") if strides.values is None: valid = False extra.append(f"Stride tensor '{strides.name}'") extra = ", ".join(extra) return valid, f"Op has non-constant tensors: {extra}" @staticmethod def constraint_ellipsis_mask(op): "ellipsis_mask must be 0" ellipsis = op.attrs["ellipsis_mask"] valid = ellipsis == 0 return valid, f"Op has ellipsis mask as: {ellipsis}" @staticmethod def constraint_axis_masks(op): "new_axis_mask and shrink_axis_mask cannot both be set" new_axis = op.attrs["new_axis_mask"] shrink_axis = op.attrs["shrink_axis_mask"] valid = (new_axis == 0) or (shrink_axis == 0) return valid, f"Op has new_axis_mask={new_axis} and shrink_axis_mask={shrink_axis}" def _get_slice_offsets(input_shape, offset_tens, offset_mask, is_begin=True): # For strided slice operator: get start or end offsets # input_shape: List[int], offset_tens: Tensor, offset_mask: int, is_begin: bool = True offsets = len(input_shape) * [0] if is_begin else input_shape[:] for idx in range(len(input_shape)): # If the i:th bit in the mask is not set then the value in offset_tens[i] should be used, otherwise it # should be ignored if (offset_mask & (1 << idx)) == 0: offsets[idx] = offset_tens.values[idx] if offsets[idx] < 0: # Convert negative indexing to positive ones offsets[idx] += input_shape[idx] return offsets @staticmethod def constraint_slice_ranges(op): "Slice 'end' values must be greater than 'begin' values" ifm, begin, end, _ = op.inputs shrink_axis_mask = op.attrs["shrink_axis_mask"] # Calculate offset begin/end offset_begin = TFLiteSemantic._get_slice_offsets(ifm.shape, begin, op.attrs["begin_mask"], is_begin=True) offset_end = TFLiteSemantic._get_slice_offsets(ifm.shape, end, op.attrs["end_mask"], is_begin=False) # Check "end - begin" doesn't result in any zero or negative elements valid = True # if a shrink mask bit is set then the end position provided by the operation should be ignored, and instead a # new end position should be calculated so that calculations in the graph optimiser, such as (end - start), # result in the correct value. otherwise, we just need to check that the begin and end values are valid for i in range(len(ifm.shape)): if (shrink_axis_mask & (1 << i)) != 0: offset_end[i] = offset_begin[i] + 1 else: if offset_end[i] <= offset_begin[i]: valid = False op.attrs["offset_begin"] = offset_begin op.attrs["offset_end"] = offset_end return valid, f"Op has begin_values={begin.values} and end_values={end.values}" @staticmethod def constraint_matching_inputs_types(op): "Both Input data types must match" ifm_dtype = op.ifm.dtype ifm2_dtype = op.ifm2.dtype valid = ifm_dtype == ifm2_dtype return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}" @staticmethod def constraint_matching_signed(op): "For IFM that are signed, OFM must also be signed" valid = True ifm_dtype = op.ifm.dtype ofm_dtype = op.ofm.dtype if ifm_dtype.type & BaseType.Signed: valid = bool(ofm_dtype.type & BaseType.Signed) return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}" @staticmethod def constraint_unsigned_valid(op): "For IFM that are unsigned, OFM must either be the same type or int32" valid = True ifm_dtype = op.ifm.dtype ofm_dtype = op.ofm.dtype if ifm_dtype.type & BaseType.Unsigned: valid = (ifm_dtype == ofm_dtype) or (ofm_dtype == DataType.int32) return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}" @staticmethod def constraint_input_signed(op): "IFM must be int8 or int16" ifm_dtype = op.ifm.dtype valid = (ifm_dtype == DataType.int8) or (ifm_dtype == DataType.int16) return valid, f"Op has ifm_dtype={ifm_dtype}" @staticmethod def constraint_input_8bit(op): "IFM must be int8 or uint8" ifm_dtype = op.ifm.dtype valid = (ifm_dtype == DataType.int8) or (ifm_dtype == DataType.uint8) return valid, f"Op has ifm_dtype={ifm_dtype}" @staticmethod def constraint_argmax_output(op): "OFM must be int32 or int64" ofm_dtype = op.ofm.dtype valid = ofm_dtype in (DataType.int32, DataType.int64) return valid, f"Op has ofm_dtype={ofm_dtype}" @staticmethod def constraint_matching_either_shapes(op): "At least one Input's shape must match the OFM's shape" ifm_shape = op.ifm.shape ifm2_shape = op.ifm2.shape if op.ifm2 else None ofm_shape = op.ofm.shape valid = (ifm_shape == ofm_shape) or (ifm2_shape == ofm_shape) return valid, f"Op has ifm_shape={ifm_shape}, ifm2_shape={ifm2_shape} and ofm_shape={ofm_shape}" @staticmethod def constraint_keep_dim_ifm_ofm(op): "The IFM and OFM must have the same number of dimensions if keep_num_dims is set to true" valid = True if op.attrs.get("keep_num_dims"): valid = len(op.ifm.shape) == len(op.ofm.shape) return valid, f"Op has ifm shape={op.ifm.shape} and ofm shape={op.ofm.shape}" @staticmethod def constraint_mean_input_dims(op): "Input tensor must be at least 2D" dims = len(op.inputs[0].shape) return 2 <= dims <= 4, f"Input is {dims}D" @staticmethod def constraint_mean_axis(op): """Requirements for axis parameter: When IFM tensor is 2D: - Reduction in both axes is supported. When IFM tensor is 3D or 4D: - Reduction in Batch axis is only supported if batch size is 1. - Reduction in both Height and Width axes is supported. - Reduction in Depth axis is supported if at least one of H,W,C are of size 1.""" input_shape = op.inputs[0].shape dims = len(input_shape) if op.inputs[1].shape == []: axis = [int(op.inputs[1].values)] else: axis = list(op.inputs[1].values) valid = True for ax in axis: if ax < 0 or ax >= dims: return False, "Axis parameter is out of bounds. axis: {axis}, dims: {dims}. " # Batch is only supported if batch shape is 1 if dims == 4 and ax == 0: if input_shape[0] != 1: valid = False break # Depth is supported if any of h,w,c == 1 if dims == 3: if ax == 2 and not any([s == 1 for s in input_shape]): valid = False break # Depth is supported if any of h,w,c == 1 if dims == 4: if ax == 3 and not any([s == 1 for s in input_shape[1:]]): valid = False break return valid, f"Shape is {input_shape}, Axis is {axis}." @staticmethod def constraint_matching_in_out_quant(op): "Input and output quantisation must match." if not check_quantized_tens_scaling_equal(op.ifm, op.ofm): return False, "IFM and OFM quantisation parameters are not equal." return True, "IFM and OFM quantisation parameters matches." @staticmethod def constraint_matching_in_out_elements(op): "Input and output number of elements must match." if shape_num_elements(op.ifm.shape) != shape_num_elements(op.ofm.shape): return False, f"IFM {op.ifm.shape} and OFM {op.ofm.shape} number of elements are not equal." return True, "IFM and OFM number of elements are equal." @staticmethod def constraint_lstm_dimensions(op): "IFM and OFM must have 3D shape" valid = len(op.ifm.shape) == len(op.ofm.shape) == 3 return valid, f"Op has ifm shape {op.ifm.shape} and ofm shape {op.ofm.shape}" @staticmethod def constraint_lstm_inputs(op): "Must have 24 input tensors" n_inputs = len(op.inputs) return n_inputs == 24, f"Op has {n_inputs} inputs" @staticmethod def constraint_lstm_intermediates(op): "Must have 5 intermediate tensors" n_intermediates = len(op.intermediates) return n_intermediates == 5, f"Op has {n_intermediates} intermediates" @staticmethod def constraint_lstm_variables(op): "State tensors must be variable" valid = True extra = [] for tens in op.inputs[18:20]: if not tens.is_variable: valid = False extra.append(tens.name) extra = ", ".join(extra) return valid, f"Op has non-variable state tensor(s): {extra}" def tflite_semantic_checker(nng): semantic_checker = TFLiteSemantic() for sg in nng.subgraphs: for op in sg.get_all_ops(): op.run_on_npu = semantic_checker.is_operator_semantic_valid(op) return nng