# SPDX-FileCopyrightText: Copyright 2020-2021, 2023 Arm Limited and/or its affiliates # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Description: # Utilities used in vela unit tests import numpy as np from ethosu.vela import architecture_features from ethosu.vela.data_type import DataType from ethosu.vela.nn_graph import Graph from ethosu.vela.nn_graph import PassPlacement from ethosu.vela.nn_graph import Subgraph from ethosu.vela.operation import Op from ethosu.vela.operation import Operation from ethosu.vela.tensor import create_const_tensor from ethosu.vela.tensor import QuantizationParameters from ethosu.vela.tensor import Tensor def create_arch(): return architecture_features.create_default_arch(architecture_features.Accelerator.Ethos_U55_128) def default_quant_params(): qp = QuantizationParameters() qp.scale_f32 = np.float32(1) qp.zero_point = 0 return qp def create_elemwise_op( op_type, name, ifm_shape, ifm2_shape, ofm_shape, datatype=DataType.uint8, ifm_quant=default_quant_params(), ifm2_quant=default_quant_params(), ofm_quant=default_quant_params(), ): # Creates elementwise operation with constant IFM/IFM2 op = Operation(op_type, name) op.add_input_tensor( create_const_tensor(name + "_ifm", ifm_shape, datatype, np.zeros(ifm_shape), quantization=ifm_quant) ) if ifm2_shape is not None: op.add_input_tensor( create_const_tensor(name + "_ifm2", ifm2_shape, datatype, np.zeros(ifm2_shape), quantization=ifm2_quant) ) ofm = Tensor(ofm_shape, datatype, name + "_ofm") ofm.quantization = ofm_quant op.set_output_tensor(ofm) op.set_ifm_ofm_shapes() return op def create_op_with_quant_tensors( op_type, ifm_shape, ofm_shape, weights_shape=None, bias_shape=None, datatype=DataType.uint8, set_ifm_ofm_shapes=True ): ifm = Tensor(ifm_shape, datatype, "in") ifm.quantization = default_quant_params() ofm = Tensor(ofm_shape, datatype, "out") ofm.quantization = default_quant_params() op = Operation(op_type, "op") op.add_input_tensor(ifm) op.set_output_tensor(ofm) # Optional weight tensor if weights_shape is not None: qp = default_quant_params() if op.type is not Op.FullyConnected: qp.zero_point = np.zeros(weights_shape) weights = create_const_tensor("weights", weights_shape, datatype, np.zeros(weights_shape), quantization=qp) op.add_input_tensor(weights) # Optional bias tensor if bias_shape is not None: qp = default_quant_params() if op.type is not Op.FullyConnected: qp.zero_point = np.zeros(bias_shape) bias = create_const_tensor("bias", bias_shape, DataType.int32, np.zeros(bias_shape), quantization=qp) op.add_input_tensor(bias) if set_ifm_ofm_shapes: op.set_ifm_ofm_shapes() return op def create_op(op_type, inputs, output, attrs=None, set_ifm_ofm_shapes=True): op = Operation(op_type, output.name + "_op") for input in inputs: if input: # Add regular tensor input op.add_input_tensor(input) else: # Add optional (None) inputs for operators with sparse input positioning op.inputs.append(input) op.set_output_tensor(output) if attrs is not None: op.attrs = attrs if set_ifm_ofm_shapes: op.set_ifm_ofm_shapes() return op def create_lstm_op(batches, times, features, outputs, datatype): input_shape = [batches, times, features] output_shape = [batches, times, outputs] weight_shape = [features, outputs] state_shape = [batches, outputs] bias_shape = [outputs] ifm = Tensor(input_shape, datatype, "in") ifm.quantization = default_quant_params() ofm = Tensor(output_shape, datatype, "out") ofm.quantization = default_quant_params() bias_dtype = DataType.int64 if datatype == DataType.int16 else DataType.int32 bias = create_const_tensor("bias", bias_shape, bias_dtype, [0] * outputs) weight_q = default_quant_params() weight = create_const_tensor("weight", weight_shape, DataType.int8, np.ones(weight_shape), quantization=weight_q) output_state = Tensor(state_shape, datatype, "output_state") output_state.quantization = default_quant_params() output_state.is_variable = True cell_state = Tensor(state_shape, DataType.int16, "cell_state") cell_state.quantization = default_quant_params() cell_state.is_variable = True intermediate = Tensor([], DataType.float32, "intermediate") hidden_scale_intermediate = Tensor([], datatype, "effective_hidden_scale_intermediate") hidden_scale_intermediate.quantization = default_quant_params() peephole = None projection = None normalisation = None inputs = [ ifm, weight, weight, weight, weight, weight, weight, weight, weight, peephole, peephole, peephole, bias, bias, bias, bias, projection, projection, output_state, cell_state, normalisation, normalisation, normalisation, normalisation, ] op = create_op(Op.UnidirectionalSequenceLstm, inputs, ofm) op.intermediates = [intermediate, intermediate, intermediate, intermediate, hidden_scale_intermediate] return op def create_subgraph(op_list): # Creates subgraph using the given list of operations sg = Subgraph() sg.placement = PassPlacement.Npu all_inputs = set(tens for op in op_list for tens in op.inputs) # Reversing, so that the resulting subgraph has same order as op_list for op in op_list[::-1]: for tens in op.outputs: if tens not in all_inputs and tens not in sg.output_tensors: sg.output_tensors.append(tens) return sg def create_graph(op_list): # Creates subgraph using the given list of operations nng = Graph() sg = create_subgraph(op_list) nng.subgraphs.append(sg) return nng