# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved. # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Description: # Contains the main sequencing of the compiler. import time from . import extract_npu_subgraphs from . import graph_optimiser from . import high_level_command_stream_generator from . import high_level_command_to_npu_op from . import live_range from . import lut from . import mark_tensors from . import npu_performance from . import npu_serialisation from . import pass_packing from . import scheduler from . import tensor_allocation from .debug_database import DebugDatabase from .nn_graph import PassPlacement from .nn_graph import TensorAllocator from .operation import Op from .rewrite_graph import verify_graph_health from .rewrite_graph import visit_graph_post_order from .scheduler import OptimizationStrategy from .tensor import MemArea from .tensor import MemType from .tensor import Tensor class CompilerOptions: """Set of options to change compiler behaviour - verbosity, targets, turning off passes. Note the difference between ArchitectureFeatures and CompilerOptions - ArchitectureFeatures is for changing the Ethos-U and system architecture - CompilerOptions is for changing the behaviour of the compiler""" def __init__( self, verbose_graph=False, verbose_quantization=False, verbose_packing=False, verbose_tensor_purpose=False, verbose_tensor_format=False, verbose_allocation=False, verbose_high_level_command_stream=False, verbose_register_command_stream=False, verbose_operators=False, verbose_weights=False, verbose_performance=False, show_cpu_operations=False, tensor_allocator=TensorAllocator.Greedy, timing=False, output_dir="outputs", cpu_tensor_alignment=Tensor.AllocationQuantum, hillclimb_max_iterations=None, ): self.verbose_graph = verbose_graph self.verbose_quantization = verbose_quantization self.verbose_packing = verbose_packing self.verbose_tensor_purpose = verbose_tensor_purpose self.verbose_tensor_format = verbose_tensor_format self.verbose_allocation = verbose_allocation self.verbose_high_level_command_stream = verbose_high_level_command_stream self.verbose_register_command_stream = verbose_register_command_stream self.verbose_operators = verbose_operators self.verbose_weights = verbose_weights self.verbose_performance = verbose_performance self.show_cpu_operations = show_cpu_operations self.tensor_allocator = tensor_allocator self.timing = timing self.output_dir = output_dir self.cpu_tensor_alignment = cpu_tensor_alignment self.hillclimb_max_iterations = hillclimb_max_iterations def __str__(self): return type(self).__name__ + ": " + str(self.__dict__) __repr__ = __str__ def next_sram_factor(alloc_results): # Bisects to find the max SRAM usage that successfully can be fitted with the tensor allocator. # Returns tuple (factor, dry_test), with factor is None (stop) or 0 <= factor <= 1 (next SRAM factor to try), # dry_test is True while still bisecting. upper = 1.0 lower = 0.7 MAX_ITERATIONS = 8 if len(alloc_results) == 0: # First iteration, try max SRAM, keep the result if it succeeds return (upper, False) elif len(alloc_results) == 1: if alloc_results[0]: # The allocator succeeded at first try; stop return (None, False) else: # Start bisecting, try lowerbound SRAM return (lower, True) elif len(alloc_results) > MAX_ITERATIONS: # Stop return (None, False) if not alloc_results[1]: # Allocation at lower failed; search interval 0 - lower upper = lower lower = 0 best = lower for success in alloc_results[2:]: middle = (lower + upper) / 2 if success: best = max(best, middle) lower = middle else: upper = middle if len(alloc_results) == MAX_ITERATIONS: # Done bisecting; repeat the best match, but not as dry test return (best, False) # Next try; run only as dry test return ((lower + upper) / 2, True) def _record_operator(op, arch): if op.type != Op.Const: DebugDatabase.add_source(op) def _check_schedule(nng, arch, scheduler_options): # check sram usage for optimisation strategy sram_usage = nng.get_root_subgraph().memory_used.get(MemArea.Sram) if sram_usage is not None and scheduler_options.optimization_strategy == OptimizationStrategy.Performance: if sram_usage > scheduler_options.optimization_sram_limit: print( f"Warning: SRAM target for arena memory area exceeded." f" Target = {scheduler_options.optimization_sram_limit} Bytes," f" Actual = {sram_usage} Bytes" ) def compiler_driver(nng, arch, options, scheduler_options, network_type): assert verify_graph_health(nng) # Pre-optimisation operator tracking for sg in nng.subgraphs: visit_graph_post_order(sg.output_tensors, arch, [], [_record_operator]) nng = graph_optimiser.optimise_graph(nng, arch, network_type, options.verbose_graph) assert verify_graph_health(nng) if options.verbose_quantization: nng.print_graph_with_tensor_quantization() nng = mark_tensors.mark_tensor_purpose(nng, arch, options.verbose_tensor_purpose) assert verify_graph_health(nng) pass_packing.pack_into_passes(nng, arch, options.verbose_packing) assert verify_graph_health(nng) extract_npu_subgraphs.extract_npu_subgraphs(nng, arch) assert verify_graph_health(nng) if options.timing: start = time.time() # Run the scheduler scheduler.schedule_passes(nng, arch, options, scheduler_options) _check_schedule(nng, arch, scheduler_options) if options.timing: stop = time.time() print("Scheduling took %f s" % (stop - start)) start = time.time() # LiveRanges for constant tensors for all Npu subgraphs permanent_storage = arch.permanent_storage_mem_area lr_graph_flash = live_range.LiveRangeGraph() # Placeholders for scratch and flash tensors that are common for all Npu subgraphs scratch_tens = None scratch_fast_tens = None flash_tens = None # Create list of NPU subgraphs with same order as the list of all subgraphs npu_subgraphs = [sg for sg in nng.subgraphs if sg.placement == PassPlacement.Npu] # Calculate live ranges for all constant Npu tensors, in permanent storage for sg in npu_subgraphs: lr_graph_flash = live_range.create_linear_live_range_graph( sg, permanent_storage, MemType.Permanent_NPU, lr_graph=lr_graph_flash, ) if npu_subgraphs: # Allocate all Npu constant tensors to the first Npu subgraph since it is # processed first during serialization into tensors first_npu_sg = npu_subgraphs[0] tensor_allocation.allocate_tensors( nng, first_npu_sg, arch, permanent_storage, set((MemType.Permanent_NPU,)), tensor_allocator=TensorAllocator.LinearAlloc, verbose_allocation=options.verbose_allocation, lr_graph=lr_graph_flash, ) root_sg = nng.get_root_subgraph() # Generate command streams and serialise Npu-ops into tensors for sg in npu_subgraphs: high_level_command_stream_generator.generate_high_level_command_stream_for_schedule( nng, sg, arch, options.verbose_high_level_command_stream ) lut.optimize_high_level_cmd_stream(sg, arch) high_level_command_to_npu_op.generate_register_command_stream_for_sg( nng, sg, arch, options.verbose_register_command_stream ) scratch_tens, scratch_fast_tens, flash_tens = npu_serialisation.serialise_npu_subgraph_into_tensors( sg, arch, scratch_tens, scratch_fast_tens, flash_tens ) npu_serialisation.rewrite_npu_call_ops(root_sg, arch) # Set Scratch and Fast_scratch Tensor size if scratch_tens is not None: scratch_tens.set_all_shapes([root_sg.memory_used_per_type.get(MemType.Scratch, 0)]) if scratch_fast_tens is not None: scratch_fast_tens.set_all_shapes([root_sg.memory_used_per_type.get(MemType.Scratch_fast, 0)]) # Allocate all Cpu constant tensors, this is done last because the Npu-ops # have to be serialized into flash and scratch tensors first tensor_allocation.allocate_tensors( nng, root_sg, arch, permanent_storage, set((MemType.Permanent_CPU,)), tensor_allocator=TensorAllocator.LinearAlloc, verbose_allocation=options.verbose_allocation, cpu_tensor_alignment=options.cpu_tensor_alignment, ) npu_performance.calc_new_performance_for_network(nng, arch, network_type, options.verbose_performance)