aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/test/test_supported_operators.py
diff options
context:
space:
mode:
authorJonas Ohlsson <jonas.ohlsson@arm.com>2021-07-26 16:13:12 +0200
committerJonas Ohlsson <jonas.ohlsson@arm.com>2021-07-27 11:06:27 +0200
commit45e653dbd81633b8d78215b16a9b2205e39dd8e2 (patch)
tree18b3073eac45e9e8d69a616ae96d7a3fbdef9663 /ethosu/vela/test/test_supported_operators.py
parentc2449827ec55f49b6087e3e385fb3c4f6776dc6a (diff)
downloadethos-u-vela-45e653dbd81633b8d78215b16a9b2205e39dd8e2.tar.gz
MLBEDSW-4853: Refactor supported operators
Refactor supported operators by breaking out model semantics into its own class. Model semantics checked right after model read. Signed-off-by: Jonas Ohlsson <jonas.ohlsson@arm.com> Change-Id: If442b189efcd91dda01af60b2b3adedfacdf2fad
Diffstat (limited to 'ethosu/vela/test/test_supported_operators.py')
-rw-r--r--ethosu/vela/test/test_supported_operators.py901
1 files changed, 0 insertions, 901 deletions
diff --git a/ethosu/vela/test/test_supported_operators.py b/ethosu/vela/test/test_supported_operators.py
deleted file mode 100644
index 38308154..00000000
--- a/ethosu/vela/test/test_supported_operators.py
+++ /dev/null
@@ -1,901 +0,0 @@
-# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
-#
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the License); you may
-# not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an AS IS BASIS, WITHOUT
-# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Description:
-# Unit tests for support_operators
-import numpy as np
-
-from ethosu.vela.data_type import DataType
-from ethosu.vela.operation import ActivationFunction
-from ethosu.vela.operation import Op
-from ethosu.vela.operation import Padding
-from ethosu.vela.supported_operators import SupportedOperators
-from ethosu.vela.tensor import create_const_tensor
-from ethosu.vela.tensor import QuantizationParameters
-from ethosu.vela.tensor import Tensor
-from ethosu.vela.test import testutil
-
-support = SupportedOperators()
-
-
-def test_constraint_tens_no_dynamic():
- # Tensors cannot be dynamic (no shape, not a scalar)
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [])
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_defined_shape():
- # Tensors cannot have None in them
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, None, 8], [1, 8, 8, 8])
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_output_scalar():
- # Scalar output is not allowed at all:
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [1, 8, 8, 8], [])
- op.ofm.values = 0.5
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_input_scalar():
- # Shapeless input is allowed if its of a certain type:
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8])
- assert support.is_operator_supported(op)
- # Invalid shapeless input due to op type:
- op = testutil.create_op_with_quant_tensors(Op.Relu, [], [1, 8, 8, 8])
- op.ifm.values = 0.5
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_shape_size():
- # Tensors cannot be > 4D
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 1, 8, 8, 8], [1, 1, 8, 8, 8], set_ifm_ofm_shapes=False)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_dtype():
- # Tensors can only be of type uint8, int8, int16 and int32
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.float32)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_int32_ops():
- # For int32, only select op types are allowed:
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8], datatype=DataType.int32)
- assert support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_dimension():
- # Tensors can only have values in the inclusive range of 1-65535
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 0], [1, 8, 8, 65536])
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_quant_none_check():
- # Tensors must have quantization parameters
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8], ifm2_quant=None)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_quant_scale():
- # Quantization scale cannot be infinite
- qp = QuantizationParameters()
- qp.zero_point = 0
- qp.scale_f32 = np.inf
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8], ifm_quant=qp)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_quant_per_axis_not_supp():
- # Quantization scale cannot be array-valued for elemwise ops
- qp = QuantizationParameters()
- qp.zero_point = np.zeros((1, 3))
- qp.scale_f32 = np.ones((1, 3))
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8], ifm_quant=qp)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tens_quant_per_axis_is_supp():
- op = testutil.create_op_with_quant_tensors(
- Op.Conv2DBias, [1, 1, 1, 3], [1, 1, 1, 3], weights_shape=[1, 1, 1, 3], bias_shape=[1, 1, 1, 3]
- )
- op.attrs = {"stride_w": 1, "stride_h": 1}
- assert support.is_operator_supported(op)
- qp = QuantizationParameters()
- qp.zero_point = np.zeros((1, 3))
- qp.scale_f32 = np.ones((1, 3))
- op.bias.quantization = qp
- assert support.is_operator_supported(op)
-
-
-def test_constraint_fc_output_2d_not_supp():
- op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [12, 1], [3, 2, 2, 1], weights_shape=[12, 1, 1, 1])
- assert not support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [12, 1, 1, 1], [1, 3, 4], weights_shape=[12, 1, 1, 1])
- assert not support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [1, 1, 1, 1], [1], weights_shape=[1, 1, 1, 1])
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_fc_output_2d_is_supp():
- op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [4, 8, 8, 4], [32, 32], weights_shape=[4, 8, 8, 4])
- assert support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [1, 1024], [16, 64], weights_shape=[1, 1024])
- assert support.is_operator_supported(op)
-
-
-def test_constraint_faf():
- # Fused activation functions, if set, must be a valid op type
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8])
- op.activation = ActivationFunction(Op.Conv2D)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_faf_ofm_dtype():
- # If fused activation function is present, OFM must be 8 or 16 bit
- shp = [1, 8, 8, 8]
- for dtype in [DataType.int8, DataType.uint8, DataType.int16, DataType.int32]:
- op = testutil.create_elemwise_op(Op.Add, "op", shp, shp, shp, datatype=dtype)
- op.activation = ActivationFunction(Op.Relu)
- expected = dtype.size_in_bytes() <= 2
- assert support.is_operator_supported(op) == expected, f"Data type: {dtype}"
-
-
-def test_constraint_conv_pass():
- # First test a simple conv passes
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 1, 1, 1], [1, 1, 1, 1], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- assert support.is_operator_supported(op)
-
-
-def test_constraint_stride_type():
- # Stride width and height must be integer types
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 1.5, "stride_h": "1"}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_stride_range():
- # Stride width and height must lie within a certain range
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 0, "stride_h": 20}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_dilation_type():
- # Dilation width and height must be integer types
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 1, "stride_h": 1, "dilation_w_factor": 1.5, "dilation_h_factor": "1"}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_dilation_range():
- # Dilation width and height must lie within a certain range
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 1, "stride_h": 1, "dilation_w_factor": 0, "dilation_h_factor": 20}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_dilated_height_range():
- # Dilated kernel height must lie within a certain range
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[65, 64, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_dilated_product_range():
- # Dilated kernel width x height must lie within a certain range
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[64, 65, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_weights_type():
- # Weight tensor must be 8-bit
- op = testutil.create_op_with_quant_tensors(
- Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1], datatype=DataType.int16
- )
- op.attrs = {"stride_w": 1, "stride_h": 1}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_weights_const():
- # Weight tensor cannot be non-const tensors
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- weights = Tensor([64, 64, 1, 1], DataType.uint8, "weights")
- weights.quantization = testutil.default_quant_params()
- op.add_input_tensor(weights)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_weights_limit():
- # Sum of weights has a limit
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- op.weights.quantization.zero_point = np.array([[[[(127 * 65536) + 1]]]])
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_bias_type():
- # Bias must have a certain datatype
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- bias = Tensor([1, 8, 8, 8], DataType.uint8, "bias")
- op.add_input_tensor(bias)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_bias_40bit():
- # Bias must not exceed 40-bit
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 1, 1, 1], [1, 1, 1, 1], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- bias = Tensor([1, 1, 1, 1], DataType.int64, "bias")
- bias.values = np.array([0x01FF_FFFF_FFFF])
- op.add_input_tensor(bias)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_batch_size():
- op = testutil.create_op_with_quant_tensors(Op.Conv2D, [2, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_quant_scale_inf():
- # Test handling IFM scale/OFM scale is infinite
- op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8])
- op.ifm.quantization.scale_f32 = np.float32(1e9)
- op.ofm.quantization.scale_f32 = np.float32(1e-35)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_ofm_scale_too_small():
- # Tests handling of OFM scale < 1e-38
- shp = [1, 10, 20, 16]
- op = testutil.create_elemwise_op(Op.Mul, "mul", shp, shp, shp, ofm_quant=testutil.default_quant_params(),)
- assert support.is_operator_supported(op)
- op.ofm.quantization.scale_f32 = 1e-43
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_depth_multiplier():
- # Valid. Depth multiplier is 1 so no further constraints
- op = testutil.create_op_with_quant_tensors(
- Op.DepthwiseConv2DBias, [1, 1, 1, 1], [1, 1, 1, 2], weights_shape=[1, 1, 1, 1]
- )
- op.attrs = {"stride_w": 1, "stride_h": 1, "depth_multiplier": 1}
- assert support.is_operator_supported(op)
- # Invalid. Depth multiplier doesnt equal ofm channel
- op = testutil.create_op_with_quant_tensors(
- Op.DepthwiseConv2DBias, [1, 1, 1, 1], [1, 1, 1, 1], weights_shape=[1, 1, 1, 1]
- )
- op.attrs = {"stride_w": 1, "stride_h": 1, "depth_multiplier": 2}
- assert not support.is_operator_supported(op)
- # Valid. Depth multiplier is equal to ofm channel
- op = testutil.create_op_with_quant_tensors(
- Op.DepthwiseConv2DBias, [1, 1, 1, 1], [1, 1, 1, 2], weights_shape=[1, 1, 1, 1]
- )
- op.attrs = {"stride_w": 1, "stride_h": 1, "depth_multiplier": 2}
- assert support.is_operator_supported(op)
-
-
-def test_constraint_tconv_stride():
- # Strides must be 2
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 2, 2, 1], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 1, "stride_h": 1, "padding": Padding.SAME}
- ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
- ifm.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tconv_same():
- # Valid
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 2, 2, 1], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.SAME}
- ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
- ifm.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm)
- assert support.is_operator_supported(op)
- # Invalid
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 4, 4, 1], weights_shape=[1, 1, 1, 1])
- op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.SAME}
- ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
- ifm.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_tconv_valid():
- # Valid
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 4, 4, 1], weights_shape=[4, 4, 1, 1])
- op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.VALID}
- ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
- ifm.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm)
- assert support.is_operator_supported(op)
- # Invalid
- op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 4, 4, 1], weights_shape=[2, 2, 1, 1])
- op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.VALID}
- ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
- ifm.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_in_out_types():
- # Valid
- op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 2, "filter_height": 2, "padding": Padding.SAME}
- assert support.is_operator_supported(op)
- # Invalid. datatypes for ifm and ofm must match (default uint8)
- op.ifm.dtype = DataType.int8
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_filter_type():
- # Filter width/height must be integers
- op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 2.5, "filter_height": "2", "padding": Padding.SAME}
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_filter_range():
- # Avg pool restrictions are dependent on padding:
- # SAME padding restricts both W and H to max 8
- op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 20, "filter_height": 20, "padding": Padding.SAME}
- assert not support.is_operator_supported(op)
- # VALID padding limits are much larger
- op.attrs["padding"] = Padding.VALID
- assert support.is_operator_supported(op)
-
-
-def test_constraint_filter_height_range_valid_pad():
- # Avg pool restrictions are dependent on padding:
- op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 2, "filter_height": 256, "padding": Padding.VALID}
- assert support.is_operator_supported(op)
- # VALID padding restricts to 256 in filter height
- op.attrs["filter_height"] = 257
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_filter_product_height_range_valid_pad():
- # Avg pool restrictions are dependent on padding:
- op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 256, "filter_height": 256, "padding": Padding.VALID}
- assert support.is_operator_supported(op)
- # VALID padding restricts filter W x H to 256x256
- op.attrs["filter_width"] = 257
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_filter_height_range():
- # Max pool restrictions arent dependent on padding
- op = testutil.create_op_with_quant_tensors(Op.MaxPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 2, "filter_height": 256, "padding": Padding.SAME}
- assert support.is_operator_supported(op)
- # Restricts to 256 in filter height
- op.attrs["filter_height"] = 257
- assert not support.is_operator_supported(op)
- # Doesnt matter if SAME or VALID
- op.attrs["padding"] = Padding.VALID
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_filter_product_height_range():
- # Max pool restrictions arent dependent on padding
- op = testutil.create_op_with_quant_tensors(Op.MaxPool, [1, 8, 8, 8], [1, 8, 8, 8])
- op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 256, "filter_height": 256, "padding": Padding.SAME}
- assert support.is_operator_supported(op)
- # Restricts filter W x H to 256x256
- op.attrs["filter_width"] = 257
- assert not support.is_operator_supported(op)
- # Doesnt matter if SAME or VALID
- op.attrs["padding"] = Padding.VALID
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_resize():
- # IFM W and H == 1
- op = testutil.create_op_with_quant_tensors(Op.ResizeBilinear, [1, 1, 1, 8], [1, 8, 8, 8])
- assert support.is_operator_supported(op)
- # IFM == OFM
- op = testutil.create_op_with_quant_tensors(Op.ResizeBilinear, [1, 8, 8, 8], [1, 8, 8, 8])
- assert support.is_operator_supported(op)
- # IFM x2 == OFM ; align_corners = False
- op = testutil.create_op_with_quant_tensors(Op.ResizeBilinear, [1, 4, 4, 8], [1, 8, 8, 8])
- assert support.is_operator_supported(op)
- # IFM x2 -1 == OFM ; align_corners = True
- op = testutil.create_op_with_quant_tensors(Op.ResizeBilinear, [1, 4, 4, 8], [1, 7, 7, 8])
- op.attrs["align_corners"] = True
- assert support.is_operator_supported(op)
- # Invalid cases
- op = testutil.create_op_with_quant_tensors(Op.ResizeBilinear, [1, 4, 4, 8], [1, 20, 20, 8])
- assert not support.is_operator_supported(op)
- op.attrs["align_corners"] = True
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_shapes():
- # Softmax requires the ifm and ofm shapes to match
- op = testutil.create_op_with_quant_tensors(Op.Softmax, [1, 1, 1, 8], [1, 2, 2, 4])
- assert not support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.Softmax, [1, 1, 1, 8], [1, 1, 1, 8])
- assert support.is_operator_supported(op)
-
-
-def test_constraint_beta_value_range():
- # beta must be positive
- op = testutil.create_op_with_quant_tensors(Op.Softmax, [1, 1, 1, 8], [1, 1, 1, 8])
- op.attrs["beta"] = -1.0
- assert not support.is_operator_supported(op)
- op.attrs["beta"] = 0.0
- assert support.is_operator_supported(op)
-
-
-def test_constraint_splitv_inferred():
- # SplitV requires a maximum of one inferred shape (-1)
- qp = testutil.default_quant_params()
- op = testutil.create_op_with_quant_tensors(Op.SplitV, [1, 1, 1, 8], [1, 1, 1, 8])
- sizes = create_const_tensor("sizes", [1, 1, 1, 4], DataType.int16, [[[[0, -1, 2, -1]]]], np.int16, quantization=qp)
- op.add_input_tensor(sizes)
- assert not support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.SplitV, [1, 1, 1, 8], [1, 1, 1, 8])
- sizes = create_const_tensor("sizes", [1, 1, 1, 4], DataType.int16, [[[[0, 1, 2, -1]]]], np.int16, quantization=qp)
- op.add_input_tensor(sizes)
- assert support.is_operator_supported(op)
-
-
-def test_constraint_concat_pass():
- # A working concat
- op = testutil.create_op_with_quant_tensors(Op.Concat, [1, 1, 1, 4], [1, 1, 1, 8])
- ifm2 = Tensor([1, 1, 1, 4], DataType.uint8, "in2")
- ifm2.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm2)
- op.attrs["axis"] = 3
- assert support.is_operator_supported(op)
-
-
-def test_constraint_axis_exists():
- # Missing axis attribute
- op = testutil.create_op_with_quant_tensors(Op.Concat, [1, 1, 1, 4], [1, 1, 1, 8])
- ifm2 = Tensor([1, 1, 1, 4], DataType.uint8, "in2")
- ifm2.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm2)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_axis_valid():
- # Invalid axis attribute
- op = testutil.create_op_with_quant_tensors(Op.Concat, [1, 1, 1, 4], [1, 1, 1, 8])
- ifm2 = Tensor([1, 1, 1, 4], DataType.uint8, "in2")
- ifm2.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm2)
- op.attrs["axis"] = 7
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_dimensionality():
- # Mismatching dimensionality: 4D+2D=4D
- op = testutil.create_op_with_quant_tensors(Op.Concat, [1, 1, 1, 4], [1, 1, 1, 8])
- ifm2 = Tensor([1, 4], DataType.uint8, "in2")
- ifm2.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm2)
- op.attrs["axis"] = 3
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_valid_dimensions():
- # Mismatching dimension value:
- # ifm2 has w and h as 2, which is not the axis to concat and doesnt match ifm1 or ofm
- op = testutil.create_op_with_quant_tensors(Op.Concat, [1, 1, 1, 4], [1, 1, 1, 8])
- ifm2 = Tensor([1, 2, 2, 4], DataType.uint8, "in2")
- ifm2.quantization = testutil.default_quant_params()
- op.add_input_tensor(ifm2)
- op.attrs["axis"] = 3
- assert not support.is_operator_supported(op)
-
-
-def create_strided_slice_op(in_shape, out_shape, start_offsets, end_offsets):
- qp = testutil.default_quant_params()
- in0 = Tensor(in_shape, DataType.uint8, "in")
- in0.quantization = qp
- in1 = create_const_tensor("begin", [len(start_offsets)], DataType.uint8, start_offsets, quantization=qp)
- in2 = create_const_tensor("end", [len(end_offsets)], DataType.uint8, end_offsets, quantization=qp)
- in3 = create_const_tensor("strides", [len(end_offsets)], DataType.uint8, len(end_offsets) * [1], quantization=qp)
- out = Tensor(out_shape, DataType.uint8, "out")
- out.quantization = qp
- attrs = {"ellipsis_mask": 0, "new_axis_mask": 0, "shrink_axis_mask": 0, "begin_mask": 0, "end_mask": 0}
- return testutil.create_op(Op.StridedSlice, [in0, in1, in2, in3], out, attrs=attrs)
-
-
-def create_pad_op(
- in_shape, out_shape, padding, in_dtype=DataType.int8, out_dtype=DataType.int8, pad_dtype=DataType.int32,
-):
- qp = testutil.default_quant_params()
- in0 = Tensor(in_shape, in_dtype, "in")
- in0.quantization = qp
- pad_tensor = create_const_tensor(name="pad", shape=list(np.shape(padding)), values=padding, dtype=pad_dtype)
- out = Tensor(out_shape, out_dtype, "out")
- out.quantization = qp.clone()
- op = testutil.create_op(Op.Pad, [in0, pad_tensor], out)
- return op
-
-
-def test_constraint_pad_input_count():
- # Incorrect number of input tensors (2)
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[0, 0], [1, 1], [1, 1], [0, 0]],)
- assert support.is_operator_supported(op)
- op.add_input_tensor(op.inputs[0].clone())
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_padded_dimensions():
- # Incorrect padding dimensions, can only pad width and height
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[1, 1], [1, 1], [1, 1], [0, 0]],)
- assert not support.is_operator_supported(op)
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[1, 1], [1, 1], [0, 0]],)
- assert support.is_operator_supported(op)
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[1, 1], [1, 1], [0, 1]],)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_pad_shape():
- # PAD operator must be of shape (3,2) or (4,2)
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[1, 1], [1, 1], [0, 0]])
- assert support.is_operator_supported(op)
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]],)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_pad_none():
- op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[],)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_pad_dtype():
- # PAD operator dtype should be int32 or int64
- op = create_pad_op(
- in_shape=[1, 1, 1, 1],
- out_shape=[1, 3, 3, 1],
- padding=[[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]],
- pad_dtype=DataType.int16,
- )
- assert not support.is_operator_supported(op)
-
-
-def create_strided_slice():
- # Creates a valid strided slice operator with some valid inputs/outputs
- op = create_strided_slice_op([1, 10, 10, 10], [1, 5, 5, 10], [127, 2, 2, 0], [0, 7, -3, 0])
- op.attrs["begin_mask"] = 1
- op.attrs["end_mask"] = 9
- assert support.is_operator_supported(op)
- return op
-
-
-def test_constraint_stridedslice_input_count():
- # Wrong number of input tensors
- op = create_strided_slice()
- op.add_input_tensor(op.inputs[0].clone())
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_stridedslice_inputs_const():
- # begin, end, stride values must not be None
- op = create_strided_slice()
- op.inputs[1].values = None
- assert not support.is_operator_supported(op)
- op = create_strided_slice()
- op.inputs[2].values = None
- assert not support.is_operator_supported(op)
- op = create_strided_slice()
- op.inputs[3].values = None
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_stridedslice_stride_values():
- # Unsupported strides
- op = create_strided_slice()
- op.inputs[3].values = [1, 1, 2, 1]
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_ellipsis_mask():
- # Unsupported ellipsis mask
- op = create_strided_slice()
- op.attrs["ellipsis_mask"] = 1
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_axis_masks():
- op = create_strided_slice()
- # Setting one of new_axis_mask/shrink_axis_mask to non-zero is ok
- op.attrs["new_axis_mask"] = 2
- assert support.is_operator_supported(op)
- op = create_strided_slice()
- op.attrs["shrink_axis_mask"] = 3
- assert support.is_operator_supported(op)
- # But setting both to non-zero is not supported
- op.attrs["new_axis_mask"] = 2
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_slice_ranges():
- # Examples where end offset <= begin offset
- op = create_strided_slice()
- op.inputs[1].values = [0, 7, 2, 0]
- assert not support.is_operator_supported(op)
- op = create_strided_slice()
- op.inputs[2].values = [0, 7, 2, 0]
- assert not support.is_operator_supported(op)
- op = create_strided_slice()
- op.attrs["begin_mask"] = 0
- assert not support.is_operator_supported(op)
- op = create_strided_slice()
- op.attrs["end_mask"] = 0
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_inputs_types():
- # input data types must match (default is uint8)
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
- op.ifm2.dtype = DataType.int8
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_signed():
- # signed inputs require output to also be signed
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int8)
- op.ofm.dtype = DataType.uint8
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_unsigned_valid():
- # unsigned inputs require output to be either:
- op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
- # the same (default uint8)
- assert support.is_operator_supported(op)
- op.ofm.dtype = DataType.int8
- assert not support.is_operator_supported(op)
- op.ofm.dtype = DataType.int16
- assert not support.is_operator_supported(op)
- # or int32
- op.ofm.dtype = DataType.int32
- assert support.is_operator_supported(op)
-
-
-def test_constraint_inputs_int32():
- # both inputs must be type int32
- op = testutil.create_elemwise_op(Op.SHL, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.SHL, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
- assert support.is_operator_supported(op)
- op.ifm2.dtype = DataType.int16
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_output_int32():
- # output must be type int32
- op = testutil.create_elemwise_op(Op.SHL, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
- assert support.is_operator_supported(op)
- op.ofm.dtype = DataType.int16
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_quantization_parameters():
- qp = QuantizationParameters()
- qp.scale_f32 = np.float32(1.5)
- qp.zero_point = 128
- # valid - all matching (uses default quant params)
- op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
- assert support.is_operator_supported(op)
- # invalid - ifm mismatch ofm
- op.ifm.quantization = qp
- assert not support.is_operator_supported(op)
- # invalid - ifm2 mismatch ofm
- op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
- op.ifm2.quantization = qp
- assert not support.is_operator_supported(op)
- # invalid - both ifm and ifm2 mismatch ofm
- op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
- op.ifm.quantization = qp
- op.ifm2.quantization = qp
- assert not support.is_operator_supported(op)
- # valid - all matching
- op.ofm.quantization = qp
- assert support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], None, [1, 8, 8, 8])
- assert support.is_operator_supported(op)
-
-
-def test_constraint_elemwise_batch_size():
- # BINARY CASE
- # Batch can be >1 if dims is <=2D
- op = testutil.create_elemwise_op(Op.Add, "op", [2, 2], [2, 2], [2, 2])
- assert support.is_operator_supported(op)
- # For dims >2D, batch must be 1
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 2, 2], [1, 2, 2], [1, 2, 2])
- assert support.is_operator_supported(op)
- # invalid case
- op = testutil.create_elemwise_op(Op.Add, "op", [2, 2, 2], [2, 2, 2], [2, 2, 2])
- assert not support.is_operator_supported(op)
-
- # UNARY CASE
- # Batch can be >1 if dims is <=2D
- op = testutil.create_elemwise_op(Op.CLZ, "op", [2, 2], None, [2, 2], datatype=DataType.int32)
- assert support.is_operator_supported(op)
- # For dims >2D, batch must be 1
- op = testutil.create_elemwise_op(Op.CLZ, "op", [1, 2, 2], None, [1, 2, 2], datatype=DataType.int32)
- assert support.is_operator_supported(op)
- # invalid case
- op = testutil.create_elemwise_op(Op.CLZ, "op", [2, 2, 2], None, [2, 2, 2], datatype=DataType.int32)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_matching_either_shapes():
- # BINARY CASE
- # At least one ifm shape must match ofm's shape
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4], [4, 4], [4, 4])
- assert support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [4, 4], [1, 4], [4, 4])
- assert support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [4, 4], [4, 4], [2, 2])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 1, 16], [1, 1, 4, 1], [1, 4, 4, 16])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 4, 1], [1, 4, 1, 16], [1, 4, 4, 16])
- assert not support.is_operator_supported(op)
-
- # UNARY CASE
- # No second input so this is treated the same as requiring ifm shape to match ofm shape
- op = testutil.create_elemwise_op(Op.CLZ, "op", [2, 2], None, [2, 2], datatype=DataType.int32)
- assert support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.CLZ, "op", [4, 4], None, [2, 2], datatype=DataType.int32)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_broadcast_shapes():
- # BINARY CASE
- # Only allow broadcast to 1 dim, for 1 rank index
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 4], [1, 2, 4], [1, 2, 4])
- assert support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 2, 4], [1, 1, 4], [1, 2, 4])
- assert support.is_operator_supported(op)
- # Only allow broadcast to 1 dim, for 3 rank indexes
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 1, 1], [1, 4, 8, 16], [1, 4, 8, 16])
- assert support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 8, 16], [1, 1, 1, 1], [1, 4, 8, 16])
- assert support.is_operator_supported(op)
- # One broadcast dim not 1
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 2, 4], [1, 4, 4], [1, 4, 4])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 4], [1, 2, 4], [1, 4, 4])
- assert not support.is_operator_supported(op)
- # OFM shape dim largest ifm/ifm2 shape dim
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4], [4, 4], [1, 4])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4], [4, 4], [1, 4])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 1, 16], [1, 1, 4, 1], [1, 4, 1, 16])
- assert not support.is_operator_supported(op)
- op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 4, 1], [1, 4, 1, 16], [1, 4, 1, 16])
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_alpha_valid():
- # Alpha cannot be negative
- op = testutil.create_elemwise_op(Op.LeakyRelu, "op", [2, 2], None, [2, 2])
- op.attrs["alpha"] = 0
- assert support.is_operator_supported(op)
- op.attrs["alpha"] = -1
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_hardswish_dtype():
- # HardSwish operator dtype should be int8 or uint8, and input dtype must match output
- # UINT8
- op = testutil.create_op_with_quant_tensors(Op.HardSwish, [1, 8, 8, 8], [1, 8, 8, 8])
- assert support.is_operator_supported(op)
- # INT8
- op = testutil.create_op_with_quant_tensors(Op.HardSwish, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int8)
- assert support.is_operator_supported(op)
-
- # Invalid
- op = testutil.create_op_with_quant_tensors(Op.HardSwish, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int16)
- assert not support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.HardSwish, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.uint16)
- assert not support.is_operator_supported(op)
- op = testutil.create_op_with_quant_tensors(Op.HardSwish, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
- assert not support.is_operator_supported(op)
-
- in_tens = Tensor([1, 8, 8, 8], DataType.int8, "in")
- out_tens = Tensor([1, 8, 8, 8], DataType.uint8, "out")
- op = testutil.create_op(Op.HardSwish, [in_tens], out_tens)
- assert not support.is_operator_supported(op)
-
-
-def test_constraint_keep_dims_ifm_ofm():
- op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [4, 8, 8, 4], [32, 32], weights_shape=[4, 8, 8, 4])
- op.attrs["keep_num_dims"] = True
- assert not support.is_operator_supported(op)
- op.attrs["keep_num_dims"] = False
- assert support.is_operator_supported(op)
-
-
-def create_mean(input_shape, output_shape, axis, datatype, attrs):
- ifm = Tensor(input_shape, datatype, "in")
- ifm.quantization = testutil.default_quant_params()
- ofm = Tensor(output_shape, datatype, "out")
- ofm.quantization = testutil.default_quant_params()
- if type(axis) is list:
- indices = create_const_tensor("indices", [len(axis)], DataType.int32, axis, np.uint8)
- elif type(axis) is int:
- indices = create_const_tensor("indices", [], DataType.int32, axis, np.uint8)
- op = testutil.create_op(Op.Mean, [ifm, indices], ofm, attrs)
- return op
-
-
-def test_mean_dtype():
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
- assert support.is_operator_supported(op)
- op.ifm.dtype = DataType.int16
- op.ofm.dtype = DataType.int16
- assert not support.is_operator_supported(op)
-
-
-def test_mean_axis():
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], 0, DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [3], DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [1, 3], DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [0, 1], DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
- assert support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [1], DataType.int8, {"keep_dims": True})
- assert support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], 2, DataType.int8, {"keep_dims": True})
- assert support.is_operator_supported(op)
- op = create_mean([1, 6, 6, 16], [1, 1, 1, 16], [2, 1], DataType.int8, {"keep_dims": True})
- assert support.is_operator_supported(op)
-
-
-def test_mean_hw_product():
- op = create_mean([1, 64, 64, 16], [1, 16], [1, 2], DataType.uint8, {})
- assert support.is_operator_supported(op)
- op = create_mean([1, 65, 64, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)
-
-
-def test_mean_hw_product_int8():
- op = create_mean([1, 16, 16, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
- assert support.is_operator_supported(op)
- op = create_mean([1, 16, 17, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)
-
-
-def test_mean_hw_product_avgpool():
- op = create_mean([1, 200, 200, 16], [1, 16], [1, 2], DataType.uint8, {"keep_dims": False})
- assert support.is_operator_supported(op)
- op = create_mean([1, 200, 200, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
- assert not support.is_operator_supported(op)