aboutsummaryrefslogtreecommitdiff
path: root/src/profiling/test/FileOnlyProfilingDecoratorTests.cpp
blob: 91584e878723387b018ba5f0cacddb6f4497844e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//
// Copyright © 2019 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <Filesystem.hpp>
#include <LabelsAndEventClasses.hpp>
#include <ProfilingService.hpp>
#include "ProfilingTestUtils.hpp"
#include "PrintPacketHeaderHandler.hpp"
#include <Runtime.hpp>
#include "TestTimelinePacketHandler.hpp"

#include <boost/filesystem.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/test/unit_test.hpp>

#include <cstdio>
#include <sstream>
#include <sys/stat.h>

using namespace armnn::profiling;
using namespace armnn;

using namespace std::chrono_literals;

class FileOnlyHelperService : public ProfilingService
{
    public:
    // Wait for a notification from the send thread
    bool WaitForPacketsSent(uint32_t timeout = 1000)
    {
        return ProfilingService::WaitForPacketSent(m_ProfilingService, timeout);
    }
    armnn::profiling::ProfilingService m_ProfilingService;
};

BOOST_AUTO_TEST_SUITE(FileOnlyProfilingDecoratorTests)

std::string UniqueFileName()
{
    std::time_t t = std::time(nullptr);
    char mbstr[100];
    std::strftime(mbstr, sizeof(mbstr), "%Y_%m_%d_%H_%M_%S_", std::localtime(&t));
    std::stringstream ss;
    ss << mbstr;
    ss << t;
    ss << ".bin";
    return ss.str();
}

BOOST_AUTO_TEST_CASE(TestFileOnlyProfiling)
{
    // This test requires at least one backend registry to be enabled
    // which can execute a NormalizationLayer
    if (!HasSuitableBackendRegistered())
    {
        return;
    }

    // Create a temporary file name.
    boost::filesystem::path tempPath = boost::filesystem::temp_directory_path();
    boost::filesystem::path tempFile = UniqueFileName();
    tempPath                         = tempPath / tempFile;
    armnn::Runtime::CreationOptions creationOptions;
    creationOptions.m_ProfilingOptions.m_EnableProfiling     = true;
    creationOptions.m_ProfilingOptions.m_FileOnly            = true;
    creationOptions.m_ProfilingOptions.m_CapturePeriod       = 100;
    creationOptions.m_ProfilingOptions.m_TimelineEnabled     = true;
    ILocalPacketHandlerSharedPtr localPacketHandlerPtr = std::make_shared<TestTimelinePacketHandler>();
    creationOptions.m_ProfilingOptions.m_LocalPacketHandlers.push_back(localPacketHandlerPtr);

    armnn::Runtime runtime(creationOptions);
    // ensure the GUID generator is reset to zero
    GetProfilingService(&runtime).ResetGuidGenerator();

    // Load a simple network
    // build up the structure of the network
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0, "input");

    ElementwiseUnaryDescriptor descriptor(UnaryOperation::Sqrt);
    IConnectableLayer* normalize = net->AddElementwiseUnaryLayer(descriptor, "normalization");

    IConnectableLayer* output = net->AddOutputLayer(0, "output");

    input->GetOutputSlot(0).Connect(normalize->GetInputSlot(0));
    normalize->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
    normalize->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));

    // optimize the network
    std::vector<armnn::BackendId> backends =
            { armnn::Compute::CpuRef, armnn::Compute::CpuAcc, armnn::Compute::GpuAcc };
    IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime.GetDeviceSpec());

    // Load it into the runtime. It should succeed.
    armnn::NetworkId netId;
    BOOST_TEST(runtime.LoadNetwork(netId, std::move(optNet)) == Status::Success);

    // Creates structures for input & output.
    std::vector<float> inputData(16);
    std::vector<float> outputData(16);
    for (unsigned int i = 0; i < 16; ++i)
    {
        inputData[i] = 9.0;
        outputData[i] = 3.0;
    }

    InputTensors  inputTensors
    {
        {0, ConstTensor(runtime.GetInputTensorInfo(netId, 0), inputData.data())}
    };
    OutputTensors outputTensors
    {
        {0, Tensor(runtime.GetOutputTensorInfo(netId, 0), outputData.data())}
    };

    // Does the inference.
    runtime.EnqueueWorkload(netId, inputTensors, outputTensors);

    static_cast<TestTimelinePacketHandler*>(localPacketHandlerPtr.get())->WaitOnInferenceCompletion(3000);

    const TimelineModel& model =
        static_cast<TestTimelinePacketHandler*>(localPacketHandlerPtr.get())->GetTimelineModel();

    for (auto& error : model.GetErrors())
    {
        std::cout << error.what() << std::endl;
    }
    BOOST_TEST(model.GetErrors().empty());
    std::vector<std::string> desc = GetModelDescription(model);
    std::vector<std::string> expectedOutput;
    expectedOutput.push_back("Entity [0] name = input type = layer");
    expectedOutput.push_back("   connection [14] from entity [0] to entity [1]");
    expectedOutput.push_back("   child: Entity [23] backendId = CpuRef type = workload");
    expectedOutput.push_back("Entity [1] name = normalization type = layer");
    expectedOutput.push_back("   connection [22] from entity [1] to entity [2]");
    expectedOutput.push_back("   child: Entity [15] backendId = CpuRef type = workload");
    expectedOutput.push_back("Entity [2] name = output type = layer");
    expectedOutput.push_back("   child: Entity [27] backendId = CpuRef type = workload");
    expectedOutput.push_back("Entity [6] type = network");
    expectedOutput.push_back("   child: Entity [0] name = input type = layer");
    expectedOutput.push_back("   child: Entity [1] name = normalization type = layer");
    expectedOutput.push_back("   child: Entity [2] name = output type = layer");
    expectedOutput.push_back("   execution: Entity [31] type = inference");
    expectedOutput.push_back("Entity [15] backendId = CpuRef type = workload");
    expectedOutput.push_back("   execution: Entity [44] type = workload_execution");
    expectedOutput.push_back("Entity [23] backendId = CpuRef type = workload");
    expectedOutput.push_back("   execution: Entity [36] type = workload_execution");
    expectedOutput.push_back("Entity [27] backendId = CpuRef type = workload");
    expectedOutput.push_back("   execution: Entity [52] type = workload_execution");
    expectedOutput.push_back("Entity [31] type = inference");
    expectedOutput.push_back("   child: Entity [36] type = workload_execution");
    expectedOutput.push_back("   child: Entity [44] type = workload_execution");
    expectedOutput.push_back("   child: Entity [52] type = workload_execution");
    expectedOutput.push_back("   event: [34] class [start_of_life]");
    expectedOutput.push_back("   event: [60] class [end_of_life]");
    expectedOutput.push_back("Entity [36] type = workload_execution");
    expectedOutput.push_back("   event: [40] class [start_of_life]");
    expectedOutput.push_back("   event: [42] class [end_of_life]");
    expectedOutput.push_back("Entity [44] type = workload_execution");
    expectedOutput.push_back("   event: [48] class [start_of_life]");
    expectedOutput.push_back("   event: [50] class [end_of_life]");
    expectedOutput.push_back("Entity [52] type = workload_execution");
    expectedOutput.push_back("   event: [56] class [start_of_life]");
    expectedOutput.push_back("   event: [58] class [end_of_life]");
    BOOST_TEST(CompareOutput(desc, expectedOutput));
}

BOOST_AUTO_TEST_CASE(DumpOutgoingValidFileEndToEnd, * boost::unit_test::disabled())
{
    // Create a temporary file name.
    boost::filesystem::path tempPath = boost::filesystem::temp_directory_path();
    boost::filesystem::path tempFile = UniqueFileName();
    tempPath                         = tempPath / tempFile;
    armnn::Runtime::CreationOptions::ExternalProfilingOptions options;
    options.m_EnableProfiling     = true;
    options.m_FileOnly            = true;
    options.m_IncomingCaptureFile = "";
    options.m_OutgoingCaptureFile = tempPath.string();
    options.m_CapturePeriod       = 100;

    FileOnlyHelperService helper;

    // Enable the profiling service
    armnn::profiling::ProfilingService profilingService;
    profilingService.ResetExternalProfilingOptions(options, true);
    // Bring the profiling service to the "WaitingForAck" state
    profilingService.Update();
    profilingService.Update();


    BOOST_CHECK(profilingService.GetCurrentState() == ProfilingState::WaitingForAck);

    profilingService.Update();
    // First packet sent will be the SendStreamMetaDataPacket, it's possible though unlikely that it will be sent twice
    // The second or possibly third packet will be the CounterDirectoryPacket which means the
    // ConnectionAcknowledgedCommandHandler has set the state to active
    uint32_t packetCount = 0;
    while(profilingService.GetCurrentState() != ProfilingState::Active && packetCount < 3)
    {
        if(!helper.WaitForPacketsSent())
        {
            BOOST_FAIL("Timeout waiting for packets");
        }
        packetCount++;
    }

    BOOST_CHECK(profilingService.GetCurrentState() == ProfilingState::Active);
    // Minimum test here is to check that the file was created.
    BOOST_CHECK(boost::filesystem::exists(tempPath.c_str()) == true);

    // Increment a counter.
    BOOST_CHECK(profilingService.IsCounterRegistered(0) == true);
    profilingService.IncrementCounterValue(0);
    BOOST_CHECK(profilingService.GetAbsoluteCounterValue(0) > 0);
    BOOST_CHECK(profilingService.GetDeltaCounterValue(0) > 0);

    // At this point the profiling service is active and we've activated all the counters. Waiting a collection
    // period should be enough to have some data in the file.

    // Wait for 1 collection period plus a bit of overhead..
    helper.WaitForPacketsSent();

    // In order to flush the files we need to gracefully close the profiling service.
    options.m_EnableProfiling = false;
    profilingService.ResetExternalProfilingOptions(options, true);

    // The output file size should be greater than 0.
    BOOST_CHECK(armnnUtils::Filesystem::GetFileSize(tempPath.string().c_str()) > 0);

    // Delete the tmp file.
    BOOST_CHECK(armnnUtils::Filesystem::Remove(tempPath.string().c_str()));
}

BOOST_AUTO_TEST_SUITE_END()