// // Copyright © 2019 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #include "ProfilingUtils.hpp" #include "common/include/ProfilingException.hpp" #include #include #include #include #include #include namespace armnn { namespace profiling { namespace { void ThrowIfCantGenerateNextUid(uint16_t uid, uint16_t cores = 0) { // Check that it is possible to generate the next UID without causing an overflow switch (cores) { case 0: case 1: // Number of cores not specified or set to 1 (a value of zero indicates the device is not capable of // running multiple parallel workloads and will not provide multiple streams of data for each event) if (uid == std::numeric_limits::max()) { throw RuntimeException("Generating the next UID for profiling would result in an overflow"); } break; default: // cores > 1 // Multiple cores available, as max_counter_uid has to be set to: counter_uid + cores - 1, the maximum // allowed value for a counter UID is consequently: uint16_t_max - cores + 1 if (uid >= std::numeric_limits::max() - cores + 1) { throw RuntimeException("Generating the next UID for profiling would result in an overflow"); } break; } } } // Anonymous namespace uint16_t GetNextUid(bool peekOnly) { // The UID used for profiling objects and events. The first valid UID is 1, as 0 is a reserved value static uint16_t uid = 1; // Check that it is possible to generate the next UID without causing an overflow (throws in case of error) ThrowIfCantGenerateNextUid(uid); if (peekOnly) { // Peek only return uid; } else { // Get the next UID return uid++; } } std::vector GetNextCounterUids(uint16_t firstUid, uint16_t cores) { // Check that it is possible to generate the next counter UID without causing an overflow (throws in case of error) ThrowIfCantGenerateNextUid(firstUid, cores); // Get the next counter UIDs size_t counterUidsSize = cores == 0 ? 1 : cores; std::vector counterUids(counterUidsSize, 0); for (size_t i = 0; i < counterUidsSize; i++) { counterUids[i] = firstUid++; } return counterUids; } void WriteBytes(const IPacketBufferPtr& packetBuffer, unsigned int offset, const void* value, unsigned int valueSize) { ARMNN_ASSERT(packetBuffer); WriteBytes(packetBuffer->GetWritableData(), offset, value, valueSize); } uint32_t ConstructHeader(uint32_t packetFamily, uint32_t packetId) { return (( packetFamily & 0x0000003F ) << 26 )| (( packetId & 0x000003FF ) << 16 ); } void WriteUint64(const std::unique_ptr& packetBuffer, unsigned int offset, uint64_t value) { ARMNN_ASSERT(packetBuffer); WriteUint64(packetBuffer->GetWritableData(), offset, value); } void WriteUint32(const IPacketBufferPtr& packetBuffer, unsigned int offset, uint32_t value) { ARMNN_ASSERT(packetBuffer); WriteUint32(packetBuffer->GetWritableData(), offset, value); } void WriteUint16(const IPacketBufferPtr& packetBuffer, unsigned int offset, uint16_t value) { ARMNN_ASSERT(packetBuffer); WriteUint16(packetBuffer->GetWritableData(), offset, value); } void WriteUint8(const IPacketBufferPtr& packetBuffer, unsigned int offset, uint8_t value) { ARMNN_ASSERT(packetBuffer); WriteUint8(packetBuffer->GetWritableData(), offset, value); } void WriteBytes(unsigned char* buffer, unsigned int offset, const void* value, unsigned int valueSize) { ARMNN_ASSERT(buffer); ARMNN_ASSERT(value); for (unsigned int i = 0; i < valueSize; i++, offset++) { buffer[offset] = *(reinterpret_cast(value) + i); } } void WriteUint64(unsigned char* buffer, unsigned int offset, uint64_t value) { ARMNN_ASSERT(buffer); buffer[offset] = static_cast(value & 0xFF); buffer[offset + 1] = static_cast((value >> 8) & 0xFF); buffer[offset + 2] = static_cast((value >> 16) & 0xFF); buffer[offset + 3] = static_cast((value >> 24) & 0xFF); buffer[offset + 4] = static_cast((value >> 32) & 0xFF); buffer[offset + 5] = static_cast((value >> 40) & 0xFF); buffer[offset + 6] = static_cast((value >> 48) & 0xFF); buffer[offset + 7] = static_cast((value >> 56) & 0xFF); } void WriteUint32(unsigned char* buffer, unsigned int offset, uint32_t value) { ARMNN_ASSERT(buffer); buffer[offset] = static_cast(value & 0xFF); buffer[offset + 1] = static_cast((value >> 8) & 0xFF); buffer[offset + 2] = static_cast((value >> 16) & 0xFF); buffer[offset + 3] = static_cast((value >> 24) & 0xFF); } void WriteUint16(unsigned char* buffer, unsigned int offset, uint16_t value) { ARMNN_ASSERT(buffer); buffer[offset] = static_cast(value & 0xFF); buffer[offset + 1] = static_cast((value >> 8) & 0xFF); } void WriteUint8(unsigned char* buffer, unsigned int offset, uint8_t value) { ARMNN_ASSERT(buffer); buffer[offset] = static_cast(value); } void ReadBytes(const IPacketBufferPtr& packetBuffer, unsigned int offset, unsigned int valueSize, uint8_t outValue[]) { ARMNN_ASSERT(packetBuffer); ReadBytes(packetBuffer->GetReadableData(), offset, valueSize, outValue); } uint64_t ReadUint64(const IPacketBufferPtr& packetBuffer, unsigned int offset) { ARMNN_ASSERT(packetBuffer); return ReadUint64(packetBuffer->GetReadableData(), offset); } uint32_t ReadUint32(const IPacketBufferPtr& packetBuffer, unsigned int offset) { ARMNN_ASSERT(packetBuffer); return ReadUint32(packetBuffer->GetReadableData(), offset); } uint16_t ReadUint16(const IPacketBufferPtr& packetBuffer, unsigned int offset) { ARMNN_ASSERT(packetBuffer); return ReadUint16(packetBuffer->GetReadableData(), offset); } uint8_t ReadUint8(const IPacketBufferPtr& packetBuffer, unsigned int offset) { ARMNN_ASSERT(packetBuffer); return ReadUint8(packetBuffer->GetReadableData(), offset); } void ReadBytes(const unsigned char* buffer, unsigned int offset, unsigned int valueSize, uint8_t outValue[]) { ARMNN_ASSERT(buffer); ARMNN_ASSERT(outValue); for (unsigned int i = 0; i < valueSize; i++, offset++) { outValue[i] = static_cast(buffer[offset]); } } uint64_t ReadUint64(const unsigned char* buffer, unsigned int offset) { ARMNN_ASSERT(buffer); uint64_t value = 0; value = static_cast(buffer[offset]); value |= static_cast(buffer[offset + 1]) << 8; value |= static_cast(buffer[offset + 2]) << 16; value |= static_cast(buffer[offset + 3]) << 24; value |= static_cast(buffer[offset + 4]) << 32; value |= static_cast(buffer[offset + 5]) << 40; value |= static_cast(buffer[offset + 6]) << 48; value |= static_cast(buffer[offset + 7]) << 56; return value; } uint32_t ReadUint32(const unsigned char* buffer, unsigned int offset) { ARMNN_ASSERT(buffer); uint32_t value = 0; value = static_cast(buffer[offset]); value |= static_cast(buffer[offset + 1]) << 8; value |= static_cast(buffer[offset + 2]) << 16; value |= static_cast(buffer[offset + 3]) << 24; return value; } uint16_t ReadUint16(const unsigned char* buffer, unsigned int offset) { ARMNN_ASSERT(buffer); uint32_t value = 0; value = static_cast(buffer[offset]); value |= static_cast(buffer[offset + 1]) << 8; return static_cast(value); } uint8_t ReadUint8(const unsigned char* buffer, unsigned int offset) { ARMNN_ASSERT(buffer); return buffer[offset]; } std::string GetSoftwareInfo() { return std::string("ArmNN"); } std::string GetHardwareVersion() { return std::string(); } std::string GetSoftwareVersion() { std::string result = "Armnn " + std::to_string(ARMNN_MAJOR_VERSION) + "." + std::to_string(ARMNN_MINOR_VERSION); return result; } std::string GetProcessName() { std::ifstream comm("/proc/self/comm"); std::string name; getline(comm, name); return name; } // Calculate the actual length an SwString will be including the terminating null character // padding to bring it to the next uint32_t boundary but minus the leading uint32_t encoding // the size to allow the offset to be correctly updated when decoding a binary packet. uint32_t CalculateSizeOfPaddedSwString(const std::string& str) { std::vector swTraceString; StringToSwTraceString(str, swTraceString); unsigned int uint32_t_size = sizeof(uint32_t); uint32_t size = (boost::numeric_cast(swTraceString.size()) - 1) * uint32_t_size; return size; } // Read TimelineMessageDirectoryPacket from given IPacketBuffer and offset SwTraceMessage ReadSwTraceMessage(const unsigned char* packetBuffer, unsigned int& offset) { ARMNN_ASSERT(packetBuffer); unsigned int uint32_t_size = sizeof(uint32_t); SwTraceMessage swTraceMessage; // Read the decl_id uint32_t readDeclId = ReadUint32(packetBuffer, offset); swTraceMessage.m_Id = readDeclId; // SWTrace "namestring" format // length of the string (first 4 bytes) + string + null terminator // Check the decl_name offset += uint32_t_size; uint32_t swTraceDeclNameLength = ReadUint32(packetBuffer, offset); offset += uint32_t_size; std::vector swTraceStringBuffer(swTraceDeclNameLength - 1); std::memcpy(swTraceStringBuffer.data(), packetBuffer + offset, swTraceStringBuffer.size()); swTraceMessage.m_Name.assign(swTraceStringBuffer.begin(), swTraceStringBuffer.end()); // name // Check the ui_name offset += CalculateSizeOfPaddedSwString(swTraceMessage.m_Name); uint32_t swTraceUINameLength = ReadUint32(packetBuffer, offset); offset += uint32_t_size; swTraceStringBuffer.resize(swTraceUINameLength - 1); std::memcpy(swTraceStringBuffer.data(), packetBuffer + offset, swTraceStringBuffer.size()); swTraceMessage.m_UiName.assign(swTraceStringBuffer.begin(), swTraceStringBuffer.end()); // ui_name // Check arg_types offset += CalculateSizeOfPaddedSwString(swTraceMessage.m_UiName); uint32_t swTraceArgTypesLength = ReadUint32(packetBuffer, offset); offset += uint32_t_size; swTraceStringBuffer.resize(swTraceArgTypesLength - 1); std::memcpy(swTraceStringBuffer.data(), packetBuffer + offset, swTraceStringBuffer.size()); swTraceMessage.m_ArgTypes.assign(swTraceStringBuffer.begin(), swTraceStringBuffer.end()); // arg_types std::string swTraceString(swTraceStringBuffer.begin(), swTraceStringBuffer.end()); // Check arg_names offset += CalculateSizeOfPaddedSwString(swTraceString); uint32_t swTraceArgNamesLength = ReadUint32(packetBuffer, offset); offset += uint32_t_size; swTraceStringBuffer.resize(swTraceArgNamesLength - 1); std::memcpy(swTraceStringBuffer.data(), packetBuffer + offset, swTraceStringBuffer.size()); swTraceString.assign(swTraceStringBuffer.begin(), swTraceStringBuffer.end()); std::stringstream stringStream(swTraceString); std::string argName; while (std::getline(stringStream, argName, ',')) { swTraceMessage.m_ArgNames.push_back(argName); } offset += CalculateSizeOfPaddedSwString(swTraceString); return swTraceMessage; } /// Creates a timeline packet header /// /// \params /// packetFamiliy Timeline Packet Family /// packetClass Timeline Packet Class /// packetType Timeline Packet Type /// streamId Stream identifier /// seqeunceNumbered When non-zero the 4 bytes following the header is a u32 sequence number /// dataLength Unsigned 24-bit integer. Length of data, in bytes. Zero is permitted /// /// \returns /// Pair of uint32_t containing word0 and word1 of the header std::pair CreateTimelinePacketHeader(uint32_t packetFamily, uint32_t packetClass, uint32_t packetType, uint32_t streamId, uint32_t sequenceNumbered, uint32_t dataLength) { // Packet header word 0: // 26:31 [6] packet_family: timeline Packet Family, value 0b000001 // 19:25 [7] packet_class: packet class // 16:18 [3] packet_type: packet type // 8:15 [8] reserved: all zeros // 0:7 [8] stream_id: stream identifier uint32_t packetHeaderWord0 = ((packetFamily & 0x0000003F) << 26) | ((packetClass & 0x0000007F) << 19) | ((packetType & 0x00000007) << 16) | ((streamId & 0x00000007) << 0); // Packet header word 1: // 25:31 [7] reserved: all zeros // 24 [1] sequence_numbered: when non-zero the 4 bytes following the header is a u32 sequence number // 0:23 [24] data_length: unsigned 24-bit integer. Length of data, in bytes. Zero is permitted uint32_t packetHeaderWord1 = ((sequenceNumbered & 0x00000001) << 24) | ((dataLength & 0x00FFFFFF) << 0); return std::make_pair(packetHeaderWord0, packetHeaderWord1); } /// Creates a packet header for the timeline messages: /// * declareLabel /// * declareEntity /// * declareEventClass /// * declareRelationship /// * declareEvent /// /// \param /// dataLength The length of the message body in bytes /// /// \returns /// Pair of uint32_t containing word0 and word1 of the header std::pair CreateTimelineMessagePacketHeader(unsigned int dataLength) { return CreateTimelinePacketHeader(1, // Packet family 0, // Packet class 1, // Packet type 0, // Stream id 0, // Sequence number dataLength); // Data length } TimelinePacketStatus WriteTimelineLabelBinaryPacket(uint64_t profilingGuid, const std::string& label, unsigned char* buffer, unsigned int remainingBufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || remainingBufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // Convert the label into a SWTrace string std::vector swTraceLabel; bool result = StringToSwTraceString(label, swTraceLabel); if (!result) { return TimelinePacketStatus::Error; } // Calculate the size of the SWTrace string label (in bytes) unsigned int swTraceLabelSize = boost::numeric_cast(swTraceLabel.size()) * uint32_t_size; // Calculate the length of the data (in bytes) unsigned int timelineLabelPacketDataLength = uint32_t_size + // decl_Id uint64_t_size + // Profiling GUID swTraceLabelSize; // Label // Check whether the timeline binary packet fits in the given buffer if (timelineLabelPacketDataLength > remainingBufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write decl_Id to the buffer WriteUint32(buffer, offset, 0u); offset += uint32_t_size; // Write the timeline binary packet payload to the buffer WriteUint64(buffer, offset, profilingGuid); // Profiling GUID offset += uint64_t_size; for (uint32_t swTraceLabelWord : swTraceLabel) { WriteUint32(buffer, offset, swTraceLabelWord); // Label offset += uint32_t_size; } // Update the number of bytes written numberOfBytesWritten = timelineLabelPacketDataLength; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineEntityBinary(uint64_t profilingGuid, unsigned char* buffer, unsigned int remainingBufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || remainingBufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // Calculate the length of the data (in bytes) unsigned int timelineEntityDataLength = uint32_t_size + uint64_t_size; // decl_id + Profiling GUID // Check whether the timeline binary packet fits in the given buffer if (timelineEntityDataLength > remainingBufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the decl_Id to the buffer WriteUint32(buffer, offset, 1u); offset += uint32_t_size; // Write the timeline binary packet payload to the buffer WriteUint64(buffer, offset, profilingGuid); // Profiling GUID // Update the number of bytes written numberOfBytesWritten = timelineEntityDataLength; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineRelationshipBinary(ProfilingRelationshipType relationshipType, uint64_t relationshipGuid, uint64_t headGuid, uint64_t tailGuid, uint64_t attributeGuid, unsigned char* buffer, unsigned int remainingBufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || remainingBufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // Calculate the length of the data (in bytes) unsigned int timelineRelationshipDataLength = uint32_t_size * 2 + // decl_id + Relationship Type uint64_t_size * 4; // Relationship GUID + Head GUID + // tail GUID + attributeGuid // Check whether the timeline binary fits in the given buffer if (timelineRelationshipDataLength > remainingBufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Initialize the offset for writing in the buffer unsigned int offset = 0; uint32_t relationshipTypeUint = 0; switch (relationshipType) { case ProfilingRelationshipType::RetentionLink: relationshipTypeUint = 0; break; case ProfilingRelationshipType::ExecutionLink: relationshipTypeUint = 1; break; case ProfilingRelationshipType::DataLink: relationshipTypeUint = 2; break; case ProfilingRelationshipType::LabelLink: relationshipTypeUint = 3; break; default: throw InvalidArgumentException("Unknown relationship type given."); } // Write the timeline binary payload to the buffer // decl_id of the timeline message uint32_t declId = 3; WriteUint32(buffer, offset, declId); // decl_id offset += uint32_t_size; WriteUint32(buffer, offset, relationshipTypeUint); // Relationship Type offset += uint32_t_size; WriteUint64(buffer, offset, relationshipGuid); // GUID of this relationship offset += uint64_t_size; WriteUint64(buffer, offset, headGuid); // head of relationship GUID offset += uint64_t_size; WriteUint64(buffer, offset, tailGuid); // tail of relationship GUID offset += uint64_t_size; WriteUint64(buffer, offset, attributeGuid); // attribute of relationship GUID // Update the number of bytes written numberOfBytesWritten = timelineRelationshipDataLength; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineMessageDirectoryPackage(unsigned char* buffer, unsigned int remainingBufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || remainingBufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint8_t_size = sizeof(uint8_t); unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // The payload/data of the packet consists of swtrace event definitions encoded according // to the swtrace directory specification. The messages being the five defined below: // // | decl_id | decl_name | ui_name | arg_types | arg_names | // |-----------|---------------------|-----------------------|-------------|-------------------------------------| // | 0 | declareLabel | declare label | ps | guid,value | // | 1 | declareEntity | declare entity | p | guid | // | 2 | declareEventClass | declare event class | pp | guid,nameGuid | // | 3 | declareRelationship | declare relationship | Ipppp | relationshipType,relationshipGuid, | // | | | | | headGuid,tailGuid,attributeGuid | // | 4 | declareEvent | declare event | @tp | timestamp,threadId,eventGuid | std::vector> timelineDirectoryMessages { { "0", "declareLabel", "declare label", "ps", "guid,value" }, { "1", "declareEntity", "declare entity", "p", "guid" }, { "2", "declareEventClass", "declare event class", "pp", "guid,nameGuid" }, { "3", "declareRelationship", "declare relationship", "Ipppp", "relationshipType,relationshipGuid,headGuid,tailGuid,attributeGuid" }, { "4", "declareEvent", "declare event", "@tp", "timestamp,threadId,eventGuid" } }; // Build the message declarations std::vector swTraceBuffer; for (const auto& directoryComponent : timelineDirectoryMessages) { // decl_id uint32_t declId = 0; try { declId = boost::numeric_cast(std::stoul(directoryComponent[0])); } catch (const std::exception&) { return TimelinePacketStatus::Error; } swTraceBuffer.push_back(declId); bool result = true; result &= ConvertDirectoryComponent(directoryComponent[1], swTraceBuffer); // decl_name result &= ConvertDirectoryComponent (directoryComponent[2], swTraceBuffer); // ui_name result &= ConvertDirectoryComponent(directoryComponent[3], swTraceBuffer); // arg_types result &= ConvertDirectoryComponent (directoryComponent[4], swTraceBuffer); // arg_names if (!result) { return TimelinePacketStatus::Error; } } unsigned int dataLength = 3 * uint8_t_size + // Stream header (3 bytes) boost::numeric_cast(swTraceBuffer.size()) * uint32_t_size; // Trace directory (5 messages) // Calculate the timeline directory binary packet size (in bytes) unsigned int timelineDirectoryPacketSize = 2 * uint32_t_size + // Header (2 words) dataLength; // Payload // Check whether the timeline directory binary packet fits in the given buffer if (timelineDirectoryPacketSize > remainingBufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Create packet header auto packetHeader = CreateTimelinePacketHeader(1, 0, 0, 0, 0, boost::numeric_cast(dataLength)); // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the timeline binary packet header to the buffer WriteUint32(buffer, offset, packetHeader.first); offset += uint32_t_size; WriteUint32(buffer, offset, packetHeader.second); offset += uint32_t_size; // Write the stream header uint8_t streamVersion = 4; uint8_t pointerBytes = boost::numeric_cast(uint64_t_size); // All GUIDs are uint64_t uint8_t threadIdBytes = boost::numeric_cast(ThreadIdSize); switch (threadIdBytes) { case 4: // Typically Windows and Android case 8: // Typically Linux break; // Valid values default: return TimelinePacketStatus::Error; // Invalid value } WriteUint8(buffer, offset, streamVersion); offset += uint8_t_size; WriteUint8(buffer, offset, pointerBytes); offset += uint8_t_size; WriteUint8(buffer, offset, threadIdBytes); offset += uint8_t_size; // Write the SWTrace directory uint32_t numberOfDeclarations = boost::numeric_cast(timelineDirectoryMessages.size()); WriteUint32(buffer, offset, numberOfDeclarations); // Number of declarations offset += uint32_t_size; for (uint32_t i : swTraceBuffer) { WriteUint32(buffer, offset, i); // Message declarations offset += uint32_t_size; } // Update the number of bytes written numberOfBytesWritten = timelineDirectoryPacketSize; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineEventClassBinary(uint64_t profilingGuid, uint64_t nameGuid, unsigned char* buffer, unsigned int remainingBufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || remainingBufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // decl_id of the timeline message uint32_t declId = 2; // Calculate the length of the data (in bytes) unsigned int dataSize = uint32_t_size + (uint64_t_size * 2); // decl_id + Profiling GUID + Name GUID // Check whether the timeline binary fits in the given buffer if (dataSize > remainingBufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the timeline binary payload to the buffer WriteUint32(buffer, offset, declId); // decl_id offset += uint32_t_size; WriteUint64(buffer, offset, profilingGuid); // Profiling GUID offset += uint64_t_size; WriteUint64(buffer, offset, nameGuid); // Name GUID // Update the number of bytes written numberOfBytesWritten = dataSize; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineEventBinary(uint64_t timestamp, std::thread::id threadId, uint64_t profilingGuid, unsigned char* buffer, unsigned int remainingBufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || remainingBufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // decl_id of the timeline message uint32_t declId = 4; // Calculate the length of the data (in bytes) unsigned int timelineEventDataLength = uint32_t_size + // decl_id uint64_t_size + // Timestamp ThreadIdSize + // Thread id uint64_t_size; // Profiling GUID // Check whether the timeline binary packet fits in the given buffer if (timelineEventDataLength > remainingBufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the timeline binary payload to the buffer WriteUint32(buffer, offset, declId); // decl_id offset += uint32_t_size; WriteUint64(buffer, offset, timestamp); // Timestamp offset += uint64_t_size; WriteBytes(buffer, offset, &threadId, ThreadIdSize); // Thread id offset += ThreadIdSize; WriteUint64(buffer, offset, profilingGuid); // Profiling GUID offset += uint64_t_size; // Update the number of bytes written numberOfBytesWritten = timelineEventDataLength; return TimelinePacketStatus::Ok; } std::string CentreAlignFormatting(const std::string& stringToPass, const int spacingWidth) { std::stringstream outputStream, centrePadding; int padding = spacingWidth - static_cast(stringToPass.size()); for (int i = 0; i < padding / 2; ++i) { centrePadding << " "; } outputStream << centrePadding.str() << stringToPass << centrePadding.str(); if (padding > 0 && padding %2 != 0) { outputStream << " "; } return outputStream.str(); } void PrintDeviceDetails(const std::pair>& devicePair) { std::string body; body.append(CentreAlignFormatting(devicePair.second->m_Name, 20)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(devicePair.first), 13)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(devicePair.second->m_Cores), 10)); body.append("\n"); std::cout << std::string(body.size(), '-') << "\n"; std::cout<< body; } void PrintCounterSetDetails(const std::pair>& counterSetPair) { std::string body; body.append(CentreAlignFormatting(counterSetPair.second->m_Name, 20)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counterSetPair.first), 13)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counterSetPair.second->m_Count), 10)); body.append("\n"); std::cout << std::string(body.size(), '-') << "\n"; std::cout<< body; } void PrintCounterDetails(std::shared_ptr& counter) { std::string body; body.append(CentreAlignFormatting(counter->m_Name, 20)); body.append(" | "); body.append(CentreAlignFormatting(counter->m_Description, 50)); body.append(" | "); body.append(CentreAlignFormatting(counter->m_Units, 14)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_Uid), 6)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_MaxCounterUid), 10)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_Class), 8)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_Interpolation), 14)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_Multiplier), 20)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_CounterSetUid), 16)); body.append(" | "); body.append(CentreAlignFormatting(std::to_string(counter->m_DeviceUid), 14)); body.append("\n"); std::cout << std::string(body.size(), '-') << "\n"; std::cout << body; } void PrintCategoryDetails(const std::unique_ptr& category, std::unordered_map> counterMap) { std::string categoryBody; std::string categoryHeader; categoryHeader.append(CentreAlignFormatting("Name", 20)); categoryHeader.append(" | "); categoryHeader.append(CentreAlignFormatting("Event Count", 14)); categoryHeader.append("\n"); categoryBody.append(CentreAlignFormatting(category->m_Name, 20)); categoryBody.append(" | "); categoryBody.append(CentreAlignFormatting(std::to_string(category->m_Counters.size()), 14)); std::cout << "\n" << "\n"; std::cout << CentreAlignFormatting("CATEGORY", static_cast(categoryHeader.size())); std::cout << "\n"; std::cout << std::string(categoryHeader.size(), '=') << "\n"; std::cout << categoryHeader; std::cout << std::string(categoryBody.size(), '-') << "\n"; std::cout << categoryBody; std::string counterHeader; counterHeader.append(CentreAlignFormatting("Counter Name", 20)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Description", 50)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Units", 14)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("UID", 6)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Max UID", 10)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Class", 8)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Interpolation", 14)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Multiplier", 20)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Counter set UID", 16)); counterHeader.append(" | "); counterHeader.append(CentreAlignFormatting("Device UID", 14)); counterHeader.append("\n"); std::cout << "\n" << "\n"; std::cout << CentreAlignFormatting("EVENTS IN CATEGORY: " + category->m_Name, static_cast(counterHeader.size())); std::cout << "\n"; std::cout << std::string(counterHeader.size(), '=') << "\n"; std::cout << counterHeader; for (auto& it: category->m_Counters) { auto search = counterMap.find(it); if(search != counterMap.end()) { PrintCounterDetails(search->second); } } } void PrintCounterDirectory(ICounterDirectory& counterDirectory) { std::string devicesHeader; devicesHeader.append(CentreAlignFormatting("Device name", 20)); devicesHeader.append(" | "); devicesHeader.append(CentreAlignFormatting("UID", 13)); devicesHeader.append(" | "); devicesHeader.append(CentreAlignFormatting("Cores", 10)); devicesHeader.append("\n"); std::cout << "\n" << "\n"; std::cout << CentreAlignFormatting("DEVICES", static_cast(devicesHeader.size())); std::cout << "\n"; std::cout << std::string(devicesHeader.size(), '=') << "\n"; std::cout << devicesHeader; for (auto& it: counterDirectory.GetDevices()) { PrintDeviceDetails(it); } std::string counterSetHeader; counterSetHeader.append(CentreAlignFormatting("Counter set name", 20)); counterSetHeader.append(" | "); counterSetHeader.append(CentreAlignFormatting("UID", 13)); counterSetHeader.append(" | "); counterSetHeader.append(CentreAlignFormatting("Count", 10)); counterSetHeader.append("\n"); std::cout << "\n" << "\n"; std::cout << CentreAlignFormatting("COUNTER SETS", static_cast(counterSetHeader.size())); std::cout << "\n"; std::cout << std::string(counterSetHeader.size(), '=') << "\n"; std::cout << counterSetHeader; for (auto& it: counterDirectory.GetCounterSets()) { PrintCounterSetDetails(it); } auto counters = counterDirectory.GetCounters(); for (auto& it: counterDirectory.GetCategories()) { PrintCategoryDetails(it, counters); } std::cout << "\n"; } uint64_t GetTimestamp() { #if USE_CLOCK_MONOTONIC_RAW using clock = MonotonicClockRaw; #else using clock = std::chrono::steady_clock; #endif // Take a timestamp auto timestamp = std::chrono::duration_cast(clock::now().time_since_epoch()); return static_cast(timestamp.count()); } Packet ReceivePacket(const unsigned char* buffer, uint32_t length) { if (buffer == nullptr) { throw armnnProfiling::ProfilingException("data buffer is nullptr"); } if (length < 8) { throw armnnProfiling::ProfilingException("length of data buffer is less than 8"); } uint32_t metadataIdentifier = 0; std::memcpy(&metadataIdentifier, buffer, sizeof(metadataIdentifier)); uint32_t dataLength = 0; std::memcpy(&dataLength, buffer + 4u, sizeof(dataLength)); std::unique_ptr packetData; if (dataLength > 0) { packetData = std::make_unique(dataLength); std::memcpy(packetData.get(), buffer + 8u, dataLength); } return Packet(metadataIdentifier, dataLength, packetData); } } // namespace profiling } // namespace armnn namespace std { bool operator==(const std::vector& left, std::thread::id right) { return std::memcmp(left.data(), &right, left.size()) == 0; } } // namespace std