// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #include "ProfilingUtils.hpp" #include #include #include #include #include namespace armnn { namespace profiling { namespace { void ThrowIfCantGenerateNextUid(uint16_t uid, uint16_t cores = 0) { // Check that it is possible to generate the next UID without causing an overflow switch (cores) { case 0: case 1: // Number of cores not specified or set to 1 (a value of zero indicates the device is not capable of // running multiple parallel workloads and will not provide multiple streams of data for each event) if (uid == std::numeric_limits::max()) { throw RuntimeException("Generating the next UID for profiling would result in an overflow"); } break; default: // cores > 1 // Multiple cores available, as max_counter_uid has to be set to: counter_uid + cores - 1, the maximum // allowed value for a counter UID is consequently: uint16_t_max - cores + 1 if (uid >= std::numeric_limits::max() - cores + 1) { throw RuntimeException("Generating the next UID for profiling would result in an overflow"); } break; } } } // Anonymous namespace uint16_t GetNextUid(bool peekOnly) { // The UID used for profiling objects and events. The first valid UID is 1, as 0 is a reserved value static uint16_t uid = 1; // Check that it is possible to generate the next UID without causing an overflow (throws in case of error) ThrowIfCantGenerateNextUid(uid); if (peekOnly) { // Peek only return uid; } else { // Get the next UID return uid++; } } std::vector GetNextCounterUids(uint16_t cores) { // The UID used for counters only. The first valid UID is 0 static uint16_t counterUid = 0; // Check that it is possible to generate the next counter UID without causing an overflow (throws in case of error) ThrowIfCantGenerateNextUid(counterUid, cores); // Get the next counter UIDs size_t counterUidsSize = cores == 0 ? 1 : cores; std::vector counterUids(counterUidsSize, 0); for (size_t i = 0; i < counterUidsSize; i++) { counterUids[i] = counterUid++; } return counterUids; } void WriteUint64(const std::unique_ptr& packetBuffer, unsigned int offset, uint64_t value) { BOOST_ASSERT(packetBuffer); WriteUint64(packetBuffer->GetWritableData(), offset, value); } void WriteUint32(const std::unique_ptr& packetBuffer, unsigned int offset, uint32_t value) { BOOST_ASSERT(packetBuffer); WriteUint32(packetBuffer->GetWritableData(), offset, value); } void WriteUint16(const std::unique_ptr& packetBuffer, unsigned int offset, uint16_t value) { BOOST_ASSERT(packetBuffer); WriteUint16(packetBuffer->GetWritableData(), offset, value); } void WriteUint64(unsigned char* buffer, unsigned int offset, uint64_t value) { BOOST_ASSERT(buffer); buffer[offset] = static_cast(value & 0xFF); buffer[offset + 1] = static_cast((value >> 8) & 0xFF); buffer[offset + 2] = static_cast((value >> 16) & 0xFF); buffer[offset + 3] = static_cast((value >> 24) & 0xFF); buffer[offset + 4] = static_cast((value >> 32) & 0xFF); buffer[offset + 5] = static_cast((value >> 40) & 0xFF); buffer[offset + 6] = static_cast((value >> 48) & 0xFF); buffer[offset + 7] = static_cast((value >> 56) & 0xFF); } void WriteUint32(unsigned char* buffer, unsigned int offset, uint32_t value) { BOOST_ASSERT(buffer); buffer[offset] = static_cast(value & 0xFF); buffer[offset + 1] = static_cast((value >> 8) & 0xFF); buffer[offset + 2] = static_cast((value >> 16) & 0xFF); buffer[offset + 3] = static_cast((value >> 24) & 0xFF); } void WriteUint16(unsigned char* buffer, unsigned int offset, uint16_t value) { BOOST_ASSERT(buffer); buffer[offset] = static_cast(value & 0xFF); buffer[offset + 1] = static_cast((value >> 8) & 0xFF); } uint64_t ReadUint64(const std::unique_ptr& packetBuffer, unsigned int offset) { BOOST_ASSERT(packetBuffer); return ReadUint64(packetBuffer->GetReadableData(), offset); } uint32_t ReadUint32(const std::unique_ptr& packetBuffer, unsigned int offset) { BOOST_ASSERT(packetBuffer); return ReadUint32(packetBuffer->GetReadableData(), offset); } uint16_t ReadUint16(const std::unique_ptr& packetBuffer, unsigned int offset) { BOOST_ASSERT(packetBuffer); return ReadUint16(packetBuffer->GetReadableData(), offset); } uint8_t ReadUint8(const std::unique_ptr& packetBuffer, unsigned int offset) { BOOST_ASSERT(packetBuffer); return ReadUint8(packetBuffer->GetReadableData(), offset); } uint64_t ReadUint64(const unsigned char* buffer, unsigned int offset) { BOOST_ASSERT(buffer); uint64_t value = 0; value = static_cast(buffer[offset]); value |= static_cast(buffer[offset + 1]) << 8; value |= static_cast(buffer[offset + 2]) << 16; value |= static_cast(buffer[offset + 3]) << 24; value |= static_cast(buffer[offset + 4]) << 32; value |= static_cast(buffer[offset + 5]) << 40; value |= static_cast(buffer[offset + 6]) << 48; value |= static_cast(buffer[offset + 7]) << 56; return value; } uint32_t ReadUint32(const unsigned char* buffer, unsigned int offset) { BOOST_ASSERT(buffer); uint32_t value = 0; value = static_cast(buffer[offset]); value |= static_cast(buffer[offset + 1]) << 8; value |= static_cast(buffer[offset + 2]) << 16; value |= static_cast(buffer[offset + 3]) << 24; return value; } uint16_t ReadUint16(const unsigned char* buffer, unsigned int offset) { BOOST_ASSERT(buffer); uint32_t value = 0; value = static_cast(buffer[offset]); value |= static_cast(buffer[offset + 1]) << 8; return static_cast(value); } uint8_t ReadUint8(const unsigned char* buffer, unsigned int offset) { BOOST_ASSERT(buffer); return buffer[offset]; } std::string GetSoftwareInfo() { return std::string("ArmNN"); } std::string GetHardwareVersion() { return std::string(); } std::string GetSoftwareVersion() { std::string armnnVersion(ARMNN_VERSION); std::string result = "Armnn " + armnnVersion.substr(2,2) + "." + armnnVersion.substr(4,2); return result; } std::string GetProcessName() { std::ifstream comm("/proc/self/comm"); std::string name; getline(comm, name); return name; } TimelinePacketStatus WriteTimelineLabelBinaryPacket(uint64_t profilingGuid, const std::string& label, unsigned char* buffer, unsigned int bufferSize, unsigned int& numberOfBytesWritten) { // Initialize the ouput value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || bufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // Convert the label into a SWTrace string std::vector swTraceLabel; bool result = StringToSwTraceString(label, swTraceLabel); if (!result) { return TimelinePacketStatus::Error; } // Calculate the size of the SWTrace string label (in bytes) unsigned int swTraceLabelSize = boost::numeric_cast(swTraceLabel.size()) * uint32_t_size; // Calculate the length of the data (in bytes) unsigned int timelineLabelPacketDataLength = uint64_t_size + // Profiling GUID swTraceLabelSize; // Label // Calculate the timeline binary packet size (in bytes) unsigned int timelineLabelPacketSize = 2 * uint32_t_size + // Header (2 words) timelineLabelPacketDataLength; // Profiling GUID + label // Check whether the timeline binary packet fits in the given buffer if (timelineLabelPacketSize > bufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Packet header word 0: // 26:31 [6] packet_family: timeline Packet Family, value 0b000001 // 19:25 [7] packet_class: packet class // 16:18 [3] packet_type: packet type // 8:15 [8] reserved: all zeros // 0:7 [8] stream_id: stream identifier uint32_t packetFamily = 1; uint32_t packetClass = 0; uint32_t packetType = 1; uint32_t streamId = 0; uint32_t packetHeaderWord0 = ((packetFamily & 0x0000003F) << 26) | ((packetClass & 0x0000007F) << 19) | ((packetType & 0x00000007) << 16) | ((streamId & 0x00000007) << 0); // Packet header word 1: // 25:31 [7] reserved: all zeros // 24 [1] sequence_numbered: when non-zero the 4 bytes following the header is a u32 sequence number // 0:23 [24] data_length: unsigned 24-bit integer. Length of data, in bytes. Zero is permitted uint32_t sequenceNumbered = 0; uint32_t dataLength = boost::numeric_cast(timelineLabelPacketDataLength); // Profiling GUID + label uint32_t packetHeaderWord1 = ((sequenceNumbered & 0x00000001) << 24) | ((dataLength & 0x00FFFFFF) << 0); // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the timeline binary packet header to the buffer WriteUint32(buffer, offset, packetHeaderWord0); offset += uint32_t_size; WriteUint32(buffer, offset, packetHeaderWord1); offset += uint32_t_size; // Write the timeline binary packet payload to the buffer WriteUint64(buffer, offset, profilingGuid); // Profiling GUID offset += uint64_t_size; for (uint32_t swTraceLabelWord : swTraceLabel) { WriteUint32(buffer, offset, swTraceLabelWord); // Label offset += uint32_t_size; } // Update the number of bytes written numberOfBytesWritten = timelineLabelPacketSize; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineEntityBinaryPacket(uint64_t profilingGuid, unsigned char* buffer, unsigned int bufferSize, unsigned int& numberOfBytesWritten) { // Initialize the ouput value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || bufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); unsigned int uint64_t_size = sizeof(uint64_t); // Calculate the length of the data (in bytes) unsigned int timelineEntityPacketDataLength = uint64_t_size; // Profiling GUID // Calculate the timeline binary packet size (in bytes) unsigned int timelineEntityPacketSize = 2 * uint32_t_size + // Header (2 words) timelineEntityPacketDataLength; // Profiling GUID // Check whether the timeline binary packet fits in the given buffer if (timelineEntityPacketSize > bufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Packet header word 0: // 26:31 [6] packet_family: timeline Packet Family, value 0b000001 // 19:25 [7] packet_class: packet class // 16:18 [3] packet_type: packet type // 8:15 [8] reserved: all zeros // 0:7 [8] stream_id: stream identifier uint32_t packetFamily = 1; uint32_t packetClass = 0; uint32_t packetType = 1; uint32_t streamId = 0; uint32_t packetHeaderWord0 = ((packetFamily & 0x0000003F) << 26) | ((packetClass & 0x0000007F) << 19) | ((packetType & 0x00000007) << 16) | ((streamId & 0x00000007) << 0); // Packet header word 1: // 25:31 [7] reserved: all zeros // 24 [1] sequence_numbered: when non-zero the 4 bytes following the header is a u32 sequence number // 0:23 [24] data_length: unsigned 24-bit integer. Length of data, in bytes. Zero is permitted uint32_t sequenceNumbered = 0; uint32_t dataLength = boost::numeric_cast(timelineEntityPacketDataLength); // Profiling GUID uint32_t packetHeaderWord1 = ((sequenceNumbered & 0x00000001) << 24) | ((dataLength & 0x00FFFFFF) << 0); // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the timeline binary packet header to the buffer WriteUint32(buffer, offset, packetHeaderWord0); offset += uint32_t_size; WriteUint32(buffer, offset, packetHeaderWord1); offset += uint32_t_size; // Write the timeline binary packet payload to the buffer WriteUint64(buffer, offset, profilingGuid); // Profiling GUID // Update the number of bytes written numberOfBytesWritten = timelineEntityPacketSize; return TimelinePacketStatus::Ok; } TimelinePacketStatus WriteTimelineMessageDirectoryPackage(unsigned char* buffer, unsigned int bufferSize, unsigned int& numberOfBytesWritten) { // Initialize the output value numberOfBytesWritten = 0; // Check that the given buffer is valid if (buffer == nullptr || bufferSize == 0) { return TimelinePacketStatus::BufferExhaustion; } // Utils unsigned int uint32_t_size = sizeof(uint32_t); // Packet header word 0: // 26:31 [6] packet_family: timeline Packet Family, value 0b000001 // 19:25 [7] packet_class: packet class // 16:18 [3] packet_type: packet type // 8:15 [8] reserved: all zeros // 0:7 [8] stream_id: stream identifier uint32_t packetFamily = 1; uint32_t packetClass = 0; uint32_t packetType = 0; uint32_t streamId = 0; uint32_t packetHeaderWord0 = ((packetFamily & 0x0000003F) << 26) | ((packetClass & 0x0000007F) << 19) | ((packetType & 0x00000007) << 16) | ((streamId & 0x00000007) << 0); // the payload/data of the packet consists of swtrace event definitions encoded according // to the swtrace directory specification. The messages being the five defined below: // | decl_id | decl_name | ui_name | arg_types | arg_names | // |-----------|---------------------|-----------------------|-------------|-------------------------------------| // | 0 | declareLabel | declare label | ps | guid,value | // | 1 | declareEntity | declare entity | p | guid | // | 2 | declareEventClass | declare event class | p | guid | // | 3 | declareRelationship | declare relationship | Ippp | relationshipType,relationshipGuid, // headGuid,tailGuid | // | 4 | declareEvent | declare event | @tp | timestamp,threadId,eventGuid | std::vector> timelineDirectoryMessages = { {"declareLabel", "declare label", "ps", "guid,value"}, {"declareEntity", "declare entity", "p", "guid"}, {"declareEventClass", "declare event class", "p", "guid"}, {"declareRelationship", "declare relationship", "Ippp", "relationshipType,relationshipGuid,headGuid,tailGuid"}, {"declareEvent", "declare event", "@tp", "timestamp,threadId,eventGuid"} }; unsigned int messagesDataLength = 0u; std::vector>> swTraceTimelineDirectoryMessages; for (const auto& timelineDirectoryMessage : timelineDirectoryMessages) { messagesDataLength += uint32_t_size; // decl_id std::vector> swTraceStringsVector; for (const auto& label : timelineDirectoryMessage) { std::vector swTraceString; bool result = StringToSwTraceString(label, swTraceString); if (!result) { return TimelinePacketStatus::Error; } messagesDataLength += boost::numeric_cast(swTraceString.size()) * uint32_t_size; swTraceStringsVector.push_back(swTraceString); } swTraceTimelineDirectoryMessages.push_back(swTraceStringsVector); } // Calculate the timeline directory binary packet size (in bytes) unsigned int timelineDirectoryPacketSize = 2 * uint32_t_size + // Header (2 words) messagesDataLength; // 5 messages length // Check whether the timeline directory binary packet fits in the given buffer if (timelineDirectoryPacketSize > bufferSize) { return TimelinePacketStatus::BufferExhaustion; } // Packet header word 1: // 25:31 [7] reserved: all zeros // 24 [1] sequence_numbered: when non-zero the 4 bytes following the header is a u32 sequence number // 0:23 [24] data_length: unsigned 24-bit integer. Length of data, in bytes. Zero is permitted uint32_t sequenceNumbered = 0; uint32_t dataLength = boost::numeric_cast(messagesDataLength); uint32_t packetHeaderWord1 = ((sequenceNumbered & 0x00000001) << 24) | ((dataLength & 0x00FFFFFF) << 0); // Initialize the offset for writing in the buffer unsigned int offset = 0; // Write the timeline binary packet header to the buffer WriteUint32(buffer, offset, packetHeaderWord0); offset += uint32_t_size; WriteUint32(buffer, offset, packetHeaderWord1); offset += uint32_t_size; for (unsigned int i = 0u; i < swTraceTimelineDirectoryMessages.size(); ++i) { // Write the timeline binary packet payload to the buffer WriteUint32(buffer, offset, i); // decl_id offset += uint32_t_size; for (std::vector swTraceString : swTraceTimelineDirectoryMessages[i]) { for (uint32_t swTraceDeclStringWord : swTraceString) { WriteUint32(buffer, offset, swTraceDeclStringWord); offset += uint32_t_size; } } } // Update the number of bytes written numberOfBytesWritten = timelineDirectoryPacketSize; return TimelinePacketStatus::Ok; } } // namespace profiling } // namespace armnn