// // Copyright © 2023 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #include "RefElementwiseBinaryWorkload.hpp" #include "Decoders.hpp" #include "ElementwiseFunction.hpp" #include "Encoders.hpp" #include "RefWorkloadUtils.hpp" #include "Maximum.hpp" #include "Minimum.hpp" #include "SquaredDifference.hpp" #include "Power.hpp" #include #include #include namespace armnn { template void ExecuteFunction(std::vector inputs, std::vector outputs, BinaryOperation operation) { const TensorInfo& inputInfo0 = GetTensorInfo(inputs[0]); const TensorInfo& inputInfo1 = GetTensorInfo(inputs[1]); const TensorInfo& outputInfo = GetTensorInfo(outputs[0]); const TensorShape& inShape0 = inputInfo0.GetShape(); const TensorShape& inShape1 = inputInfo1.GetShape(); const TensorShape& outShape = outputInfo.GetShape(); std::unique_ptr> input0 = MakeDecoder(inputInfo0, inputs[0]->Map()); std::unique_ptr> input1 = MakeDecoder(inputInfo1, inputs[1]->Map()); std::unique_ptr> output = MakeEncoder(outputInfo, outputs[0]->Map()); using AddFunction = ElementwiseBinaryFunction>; using DivFunction = ElementwiseBinaryFunction>; using MaximumFunction = ElementwiseBinaryFunction>; using MinimumFunction = ElementwiseBinaryFunction>; using MulFunction = ElementwiseBinaryFunction>; using SubFunction = ElementwiseBinaryFunction>; using SqDiffFunction = ElementwiseBinaryFunction>; using PowerFunction = ElementwiseBinaryFunction>; switch (operation) { case BinaryOperation::Add: { AddFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::Div: { DivFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::Maximum: { MaximumFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::Minimum: { MinimumFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::Mul: { MulFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::Sub: { SubFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::SqDiff: { SqDiffFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } case BinaryOperation::Power: { PowerFunction(inShape0, inShape1, outShape, *input0, *input1, *output); break; } default: { throw InvalidArgumentException(std::string("Unsupported binary operation ") + GetBinaryOperationAsCString(operation), CHECK_LOCATION()); } } } RefElementwiseBinaryWorkload::RefElementwiseBinaryWorkload(const ElementwiseBinaryQueueDescriptor& desc, const WorkloadInfo& info) : RefBaseWorkload(desc, info) {} void RefElementwiseBinaryWorkload::Execute() const { Execute(m_Data.m_Inputs, m_Data.m_Outputs); } void RefElementwiseBinaryWorkload::ExecuteAsync(ExecutionData& executionData) { WorkingMemDescriptor* workingMemDescriptor = static_cast(executionData.m_Data); Execute(workingMemDescriptor->m_Inputs, workingMemDescriptor->m_Outputs); } void RefElementwiseBinaryWorkload::Execute(std::vector inputs, std::vector outputs) const { ARMNN_SCOPED_PROFILING_EVENT_REF_NAME_GUID("RefElementwiseBinaryWorkload_Execute"); if (GetTensorInfo(inputs[0]).GetDataType() == DataType::Signed32) { ExecuteFunction(inputs, outputs, m_Data.m_Parameters.m_Operation); } else { ExecuteFunction(inputs, outputs, m_Data.m_Parameters.m_Operation); } } } // namespace armnn