// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #include "NeonNormalizationFloatWorkload.hpp" #include #include #include using namespace armnn::armcomputetensorutils; namespace armnn { namespace { bool IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor& parameters, Optional reasonIfUnsupported) { if (parameters.m_NormMethodType != NormalizationAlgorithmMethod::LocalBrightness) { if (reasonIfUnsupported) { reasonIfUnsupported.value() = "Unsupported normalisation method type, only LocalBrightness is supported"; } return false; } if (parameters.m_NormSize % 2 == 0) { if (reasonIfUnsupported) { reasonIfUnsupported.value() = "Normalization size must be an odd number."; } return false; } return true; } } // anonymous namespace arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo& input, const TensorInfo& output, const NormalizationDescriptor& descriptor) { const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout); const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout); arm_compute::NormalizationLayerInfo normalizationInfo = BuildArmComputeNormalizationLayerInfo(descriptor); return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo); } NeonNormalizationFloatWorkload::NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor& descriptor, const WorkloadInfo& info, std::shared_ptr& memoryManager) : FloatWorkload(descriptor, info) , m_NormalizationLayer(memoryManager) { m_Data.ValidateInputsOutputs("NeonNormalizationFloatWorkload", 1, 1); std::string reasonIfUnsupported; if (!IsNeonNormalizationDescriptorSupported(m_Data.m_Parameters, Optional(reasonIfUnsupported))) { throw UnimplementedException(reasonIfUnsupported); } // Input and output tensors have to have the same dimensionality. if (info.m_InputTensorInfos[0].GetShape()[1] != info.m_OutputTensorInfos[0].GetShape()[1] || info.m_InputTensorInfos[0].GetShape()[0] != info.m_OutputTensorInfos[0].GetShape()[0] || info.m_InputTensorInfos[0].GetShape()[3] != info.m_OutputTensorInfos[0].GetShape()[3] || info.m_InputTensorInfos[0].GetShape()[2] != info.m_OutputTensorInfos[0].GetShape()[2]) { throw InvalidArgumentException("Normalization requires input and output tensors to have equal dimensionality."); } arm_compute::ITensor& input = boost::polymorphic_downcast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ITensor& output = boost::polymorphic_downcast(m_Data.m_Outputs[0])->GetTensor(); arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout); input.info()->set_data_layout(aclDataLayout); output.info()->set_data_layout(aclDataLayout); const arm_compute::NormType normType = ConvertNormalizationAlgorithmChannelToAclNormType(m_Data.m_Parameters.m_NormChannelType); arm_compute::NormalizationLayerInfo normalizationInfo(normType, m_Data.m_Parameters.m_NormSize, m_Data.m_Parameters.m_Alpha, m_Data.m_Parameters.m_Beta, m_Data.m_Parameters.m_K, false); m_NormalizationLayer.configure(&input, &output, normalizationInfo); } void NeonNormalizationFloatWorkload::Execute() const { ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonNormalizationFloatWorkload_Execute"); m_NormalizationLayer.run(); } } //namespace armnn