// // Copyright © 2017 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #include "NeonFullyConnectedWorkload.hpp" #include "NeonWorkloadUtils.hpp" #include #include #include #include #include namespace armnn { using namespace armcomputetensorutils; using ACLMemManagerOnDemand = std::shared_ptr; arm_compute::Status NeonFullyConnectedWorkloadValidate(const TensorInfo& input, const TensorInfo& output, const TensorInfo& weights, const Optional& biases, const FullyConnectedDescriptor& descriptor, const ActivationDescriptor* activationDescriptor) { const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input); const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output); const arm_compute::TensorInfo aclWeights = BuildArmComputeTensorInfo(weights); arm_compute::TensorInfo aclBiases; arm_compute::TensorInfo* optionalAclBiases = nullptr; if (descriptor.m_BiasEnabled) { ARMNN_ASSERT(biases.has_value()); aclBiases = BuildArmComputeTensorInfo(biases.value()); optionalAclBiases = &aclBiases; } const arm_compute::FullyConnectedLayerInfo fullyConnectedLayerInfo = ConvertFullyConnectedDescriptorToAclFullyConnectedLayerInfo(descriptor, activationDescriptor); return arm_compute::NEFullyConnectedLayer::validate(&aclInput, &aclWeights, optionalAclBiases, &aclOutput, fullyConnectedLayerInfo); } NeonFullyConnectedWorkload::NeonFullyConnectedWorkload(const FullyConnectedQueueDescriptor& descriptor, const WorkloadInfo& info, ACLMemManagerOnDemand& memoryManager) : NeonBaseWorkload(descriptor, info) { m_Data.ValidateInputsOutputs("NeonFullyConnectedWorkload", 1, 1); arm_compute::ITensor& input = PolymorphicDowncast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ITensor& output = PolymorphicDowncast(m_Data.m_Outputs[0])->GetTensor(); m_WeightsTensor = std::make_unique(); BuildArmComputeTensor(*m_WeightsTensor, m_Data.m_Weight->GetTensorInfo()); if (m_Data.m_Parameters.m_BiasEnabled) { m_BiasesTensor = std::make_unique(); BuildArmComputeTensor(*m_BiasesTensor, m_Data.m_Bias->GetTensorInfo()); } const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor); arm_compute::FullyConnectedLayerInfo fc_info = ConvertFullyConnectedDescriptorToAclFullyConnectedLayerInfo(descriptor.m_Parameters, activationInfo); auto layer = std::make_unique(memoryManager); layer->configure(&input, m_WeightsTensor.get(), m_BiasesTensor.get(), &output, fc_info); m_FullyConnectedLayer.reset(layer.release()); // Allocate if (m_Data.m_Weight->GetTensorInfo().GetDataType() == DataType::QAsymmU8) { InitializeArmComputeTensorData(*m_WeightsTensor, m_Data.m_Weight); } else { InitializeArmComputeTensorData(*m_WeightsTensor, m_Data.m_Weight); } if (m_BiasesTensor) { if (m_Data.m_Bias->GetTensorInfo().GetDataType() == DataType::Signed32) { InitializeArmComputeTensorData(*m_BiasesTensor, m_Data.m_Bias); } else { InitializeArmComputeTensorData(*m_BiasesTensor, m_Data.m_Bias); } } // Add details for profiling output WorkloadInfo detailsInfo; detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos; detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos; detailsInfo.m_WeightsTensorInfo = armnn::Optional(descriptor.m_Weight->GetTensorInfo()); if (descriptor.m_Parameters.m_BiasEnabled) { detailsInfo.m_BiasTensorInfo = armnn::Optional(descriptor.m_Bias->GetTensorInfo()); } // Report Profiling Details ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonFullyConnectedWorkload_Construct", descriptor.m_Parameters, detailsInfo, this->GetGuid()); // Force Compute Library to perform the necessary copying and reshaping, after which // delete all the input tensors that will no longer be needed m_FullyConnectedLayer->prepare(); FreeUnusedTensors(); } void NeonFullyConnectedWorkload::Execute() const { ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonFullyConnectedWorkload_Execute", this->GetGuid()); m_FullyConnectedLayer->run(); } void NeonFullyConnectedWorkload::FreeUnusedTensors() { FreeTensorIfUnused(m_WeightsTensor); FreeTensorIfUnused(m_BiasesTensor); } } //namespace armnn