// // Copyright © 2017 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #include "ClConvolution2dWorkload.hpp" #include "ClWorkloadUtils.hpp" #include #include #include #include #include #include #include namespace armnn { using namespace armcomputetensorutils; arm_compute::Status ClConvolution2dWorkloadValidate(const TensorInfo& input, const TensorInfo& output, const Convolution2dDescriptor& descriptor, const TensorInfo& weights, const Optional& biases, bool isFastMathEnabled, const ActivationDescriptor* activationDescriptor) { // The arm_compute::CLConvolutionLayer supports both const and non const // weights. However, in the case of non const weights we'd have to call // prepare or configure for each inference which we're not setup to do just yet. if (!weights.IsConstant()) { return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR, "ArmNN ClConvolution2dWorkload does not support non constant weights."}; } const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout); const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout); arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.m_DataLayout); aclWeightsInfo.set_are_values_constant(weights.IsConstant()); const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.m_DilationX, descriptor.m_DilationY); arm_compute::TensorInfo aclBiasesInfo; arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr; if (descriptor.m_BiasEnabled) { ARMNN_ASSERT(biases.has_value()); // Same for bias as weights. We don't currently support non const. if (!biases.value().IsConstant()) { return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR, "ArmNN ClConvolution2dWorkload does not support non constant bias."}; } aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout); aclBiasesInfo.set_are_values_constant(biases.value().IsConstant()); optionalAclBiasesInfo = &aclBiasesInfo; } arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor); const arm_compute::ActivationLayerInfo activationInfo = ConvertActivationDescriptorToAclActivationLayerInfo( activationDescriptor); return arm_compute::CLConvolutionLayer::validate(&aclInputInfo, &aclWeightsInfo, optionalAclBiasesInfo, &aclOutputInfo, layerInfo, arm_compute::WeightsInfo(), aclDilationInfo, activationInfo, isFastMathEnabled); } ClConvolution2dWorkload::ClConvolution2dWorkload(const Convolution2dQueueDescriptor& descriptor, const WorkloadInfo& info, std::shared_ptr& memoryManager, const arm_compute::CLCompileContext& clCompileContext, const bool isFastMathEnabled) : ClBaseWorkload(descriptor, info) , m_ConvolutionLayer(memoryManager) { ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "ClConvolution2dWorkload"); const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(m_Data.m_Parameters.m_DilationX, m_Data.m_Parameters.m_DilationY); uint32_t numInputs = m_Data.m_Parameters.m_BiasEnabled ? 3: 2; m_Data.ValidateInputsOutputs("ClConvolution2dWorkload", numInputs, 1); arm_compute::ICLTensor& input = static_cast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ICLTensor& output = static_cast(m_Data.m_Outputs[0])->GetTensor(); arm_compute::ICLTensor& weights = static_cast(m_Data.m_Inputs[1])->GetTensor(); arm_compute::ICLTensor* bias = nullptr; if (m_Data.m_Parameters.m_BiasEnabled) { bias = &static_cast(m_Data.m_Inputs[2])->GetTensor(); } // Create Proxy tensor and set the initial tensor handle to it m_InputProxy = std::make_unique(&input); m_OutputProxy = std::make_unique(&output); arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout); input.info()->set_data_layout(aclDataLayout); output.info()->set_data_layout(aclDataLayout); weights.info()->set_data_layout(aclDataLayout); arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters); const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor); { ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "ClConvolution2dWorkload_configure"); m_ConvolutionLayer.configure(clCompileContext, m_InputProxy.get(), &weights, bias, m_OutputProxy.get(), padStrideInfo, arm_compute::WeightsInfo(), aclDilationInfo, activationInfo, isFastMathEnabled); } m_ConvolutionMethod = m_ConvolutionLayer.get_convolution_method(input.info(), weights.info(), output.info(), padStrideInfo, arm_compute::WeightsInfo(), activationInfo, arm_compute::CLScheduler::get().target(), aclDilationInfo, isFastMathEnabled); // Add details for profiling output WorkloadInfo detailsInfo; detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos; detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos; detailsInfo.m_WeightsTensorInfo = armnn::Optional(descriptor.m_Weight->GetTensorInfo()); detailsInfo.m_ConvolutionMethod = armnn::Optional(GetConvolutionMethodString(m_ConvolutionMethod)); if (descriptor.m_Parameters.m_BiasEnabled) { detailsInfo.m_BiasTensorInfo = armnn::Optional(descriptor.m_Bias->GetTensorInfo()); } // Report Profiling Details ARMNN_REPORT_PROFILING_WORKLOAD_DESC("ClConvolution2dWorkload_Construct", descriptor.m_Parameters, detailsInfo, GetGuid()); } void ClConvolution2dWorkload::Execute() const { ARMNN_SCOPED_PROFILING_EVENT_CL_GUID("ClConvolution2dWorkload_Execute", GetGuid()); RunClFunction(m_ConvolutionLayer, CHECK_LOCATION()); } arm_compute::ConvolutionMethod ClConvolution2dWorkload::GetConvolutionMethod() const { return m_ConvolutionMethod; } void ClConvolution2dWorkload::Reconfigure() { arm_compute::ICLTensor& input = static_cast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ICLTensor& output = static_cast(m_Data.m_Outputs[0])->GetTensor(); m_InputProxy->set(&input); m_OutputProxy->set(&output); } } //namespace armnn