// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include #include #include #include #include #include #include #include #include namespace { using namespace armnn; template bool ConstantUsageTest(const std::vector& computeDevice, const TensorInfo& commonTensorInfo, const std::vector& inputData, const std::vector& constantData, const std::vector& expectedOutputData) { // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(IRuntime::Create(options)); // Builds up the structure of the network. INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); IConnectableLayer* constant = net->AddConstantLayer(ConstTensor(commonTensorInfo, constantData)); IConnectableLayer* add = net->AddAdditionLayer(); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(add->GetInputSlot(0)); constant->GetOutputSlot(0).Connect(add->GetInputSlot(1)); add->GetOutputSlot(0).Connect(output->GetInputSlot(0)); // Sets the tensors in the network. input->GetOutputSlot(0).SetTensorInfo(commonTensorInfo); constant->GetOutputSlot(0).SetTensorInfo(commonTensorInfo); add->GetOutputSlot(0).SetTensorInfo(commonTensorInfo); // optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, computeDevice, runtime->GetDeviceSpec()); // Loads it into the runtime. NetworkId netId; runtime->LoadNetwork(netId, std::move(optNet)); // Creates structures for input & output. std::vector outputData(inputData.size()); InputTensors inputTensors { {0, ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())} }; OutputTensors outputTensors { {0, Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())} }; // Does the inference. runtime->EnqueueWorkload(netId, inputTensors, outputTensors); // Checks the results. return outputData == expectedOutputData; } inline bool ConstantUsageFloat32Test(const std::vector& backends) { TensorInfo commonTensorInfo({ 2, 3 }, DataType::Float32); commonTensorInfo.SetConstant(true); return ConstantUsageTest(backends, commonTensorInfo, std::vector{ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }, // Input. std::vector{ 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }, // Const input. std::vector{ 7.f, 7.f, 7.f, 7.f, 7.f, 7.f } // Expected output. ); } inline bool ConstantUsageUint8Test(const std::vector& backends) { TensorInfo commonTensorInfo({ 2, 3 }, DataType::QAsymmU8); const float scale = 0.023529f; const int8_t offset = -43; commonTensorInfo.SetQuantizationScale(scale); commonTensorInfo.SetQuantizationOffset(offset); commonTensorInfo.SetConstant(true); return ConstantUsageTest(backends, commonTensorInfo, armnnUtils::QuantizedVector({ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }, scale, offset), // Input. armnnUtils::QuantizedVector({ 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }, scale, offset), // Const input. armnnUtils::QuantizedVector({ 7.f, 7.f, 7.f, 7.f, 7.f, 7.f }, scale, offset) // Expected output. ); } // Utility function to find the number of instances of a substring within a string. int SubStringCounter(std::string& string, std::string&& substring) { std::size_t found = 0; int count = 0; // Look for the substring starting from where we last found the substring while((found = string.find(substring, found)) != std::string::npos) { count++; // Offset by substring length to avoid finding the same substring twice found += substring.length(); } return count; } template, typename TOutput = ResolveType> void EndToEndLayerTestImpl(INetworkPtr network, const std::map>& inputTensorData, const std::map>& expectedOutputData, std::vector backends, float tolerance = 0.000001f) { // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(IRuntime::Create(options)); // optimize the network IOptimizedNetworkPtr optNet = Optimize(*network, backends, runtime->GetDeviceSpec()); // Loads it into the runtime. NetworkId netId; runtime->LoadNetwork(netId, std::move(optNet)); InputTensors inputTensors; inputTensors.reserve(inputTensorData.size()); for (auto&& it : inputTensorData) { inputTensors.push_back({it.first, ConstTensor(runtime->GetInputTensorInfo(netId, it.first), it.second.data())}); } OutputTensors outputTensors; outputTensors.reserve(expectedOutputData.size()); std::map> outputStorage; for (auto&& it : expectedOutputData) { std::vector out(it.second.size()); outputStorage.emplace(it.first, out); outputTensors.push_back({it.first, Tensor(runtime->GetOutputTensorInfo(netId, it.first), outputStorage.at(it.first).data())}); } // Does the inference. runtime->EnqueueWorkload(netId, inputTensors, outputTensors); // Checks the results. for (auto&& it : expectedOutputData) { std::vector out = outputStorage.at(it.first); for (unsigned int i = 0; i < out.size(); ++i) { CHECK_MESSAGE(Compare(it.second[i], out[i], tolerance) == true, "Actual output: " << out[i] << ". Expected output:" << it.second[i]); } } } inline void ImportNonAlignedInputPointerTest(std::vector backends) { using namespace armnn; // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* pooling = net->AddActivationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32, 0.0f, 0, true)); pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); // Optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); CHECK(optNet); // Loads it into the runtime. NetworkId netId; std::string ignoredErrorMessage; // Enable Importing INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Undefined); runtime->LoadNetwork(netId, std::move(optNet), ignoredErrorMessage, networkProperties); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f }; // Misaligned input float* misalignedInputData = reinterpret_cast(reinterpret_cast(inputData.data()) + 1); std::vector outputData(4); // Aligned output float* alignedOutputData = outputData.data(); InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), misalignedInputData)}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), alignedOutputData)} }; runtime->GetProfiler(netId)->EnableProfiling(true); // Do the inference and expect it to fail with a ImportMemoryException CHECK_THROWS_AS(runtime->EnqueueWorkload(netId, inputTensors, outputTensors), MemoryImportException); } inline void ExportNonAlignedOutputPointerTest(std::vector backends) { using namespace armnn; // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* pooling = net->AddActivationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32, 0.0f, 0, true)); pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); // Optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); CHECK(optNet); // Loads it into the runtime. NetworkId netId; std::string ignoredErrorMessage; // Enable Importing and Exporting INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Malloc); runtime->LoadNetwork(netId, std::move(optNet), ignoredErrorMessage, networkProperties); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f }; // Aligned input float* alignedInputData = inputData.data(); std::vector outputData(5); // Misaligned output float* misalignedOutputData = reinterpret_cast(reinterpret_cast(outputData.data()) + 1); InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), alignedInputData)}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), misalignedOutputData)} }; // Do the inference and expect it to fail with a ExportMemoryException if (backends[0] == Compute::CpuAcc) { // For CpuAcc the NeonTensorHandle will throw its own exception on misaligned memory CHECK_THROWS_AS(runtime->EnqueueWorkload(netId, inputTensors, outputTensors), MemoryImportException); } else { CHECK_THROWS_AS(runtime->EnqueueWorkload(netId, inputTensors, outputTensors), MemoryExportException); } } inline void ImportAlignedPointerTest(std::vector backends) { using namespace armnn; // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* pooling = net->AddActivationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32, 0.0f, 0, true)); pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); // Optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); CHECK(optNet); // Loads it into the runtime. NetworkId netId; std::string ignoredErrorMessage; // Enable Importing INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Malloc); runtime->LoadNetwork(netId, std::move(optNet), ignoredErrorMessage, networkProperties); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f }; std::vector outputData(4); std::vector expectedOutput { 1.0f, 4.0f, 9.0f, 16.0f }; InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())} }; runtime->GetProfiler(netId)->EnableProfiling(true); // Do the inference runtime->EnqueueWorkload(netId, inputTensors, outputTensors); // Retrieve the Profiler.Print() output to get the workload execution ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance(); std::stringstream ss; profilerManager.GetProfiler()->Print(ss);; std::string dump = ss.str(); // Contains ActivationWorkload std::size_t found = dump.find("ActivationWorkload"); CHECK(found != std::string::npos); // Contains SyncMemGeneric found = dump.find("SyncMemGeneric"); CHECK(found != std::string::npos); // Does not contain CopyMemGeneric found = dump.find("CopyMemGeneric"); CHECK(found == std::string::npos); // Check output is as expected CHECK(outputData == expectedOutput); } inline void ImportOnlyWorkload(std::vector backends) { using namespace armnn; IRuntime::CreationOptions options; IRuntimePtr runtime(IRuntime::Create(options)); // Builds up the structure of the network. INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* pooling = net->AddActivationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32, 0.0f, 0, true)); pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); // optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); INFO("Load Network"); // Load it into the runtime. It should pass. NetworkId netId; std::string ignoredErrorMessage; INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Undefined); CHECK(runtime->LoadNetwork(netId, std::move(optNet),ignoredErrorMessage, networkProperties) == Status::Success); INFO("Generate Data"); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f }; std::vector outputData(4); std::vector expectedOutput { 1.0f, 4.0f, 9.0f, 16.0f }; INFO("Create Network"); InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())} }; INFO("Get Profiler"); runtime->GetProfiler(netId)->EnableProfiling(true); INFO("Run Inference"); // Do the inference runtime->EnqueueWorkload(netId, inputTensors, outputTensors); INFO("Print Profiler"); // Retrieve the Profiler.Print() output to get the workload execution ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance(); std::stringstream ss; profilerManager.GetProfiler()->Print(ss);; std::string dump = ss.str(); // Check there are no SyncMemGeneric workloads as we didn't export INFO("Find SyncMemGeneric"); int count = SubStringCounter(dump, "SyncMemGeneric"); CHECK(count == 0); // Should only be 1 CopyMemGeneric for the output as we imported INFO("Find CopyMemGeneric"); count = SubStringCounter(dump, "CopyMemGeneric"); CHECK(count == 1); // Check the output is correct CHECK(std::equal(outputData.begin(), outputData.end(), expectedOutput.begin(), expectedOutput.end())); } inline void ExportOnlyWorkload(std::vector backends) { using namespace armnn; IRuntime::CreationOptions options; IRuntimePtr runtime(IRuntime::Create(options)); // Builds up the structure of the network. INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* pooling = net->AddActivationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32, 0.0f, 0, true)); pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); // optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); INFO("Load Network"); // Load it into the runtime. It should pass. NetworkId netId; std::string ignoredErrorMessage; INetworkProperties networkProperties(false, MemorySource::Undefined, MemorySource::Malloc); CHECK(runtime->LoadNetwork(netId, std::move(optNet),ignoredErrorMessage, networkProperties) == Status::Success); INFO("Generate Data"); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f }; std::vector outputData(4); std::vector expectedOutput { 1.0f, 4.0f, 9.0f, 16.0f }; INFO("Create Network"); InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())} }; INFO("Get Profiler"); runtime->GetProfiler(netId)->EnableProfiling(true); INFO("Run Inference"); // Do the inference runtime->EnqueueWorkload(netId, inputTensors, outputTensors); INFO("Print Profiler"); // Retrieve the Profiler.Print() output to get the workload execution ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance(); std::stringstream ss; profilerManager.GetProfiler()->Print(ss);; std::string dump = ss.str(); // Check there is a SyncMemGeneric workload as we exported INFO("Find SyncMemGeneric"); int count = SubStringCounter(dump, "SyncMemGeneric"); CHECK(count == 1); // Should be 1 CopyMemGeneric for the output as we did not import INFO("Find CopyMemGeneric"); count = SubStringCounter(dump, "CopyMemGeneric"); CHECK(count == 1); // Check the output is correct CHECK(std::equal(outputData.begin(), outputData.end(), expectedOutput.begin(), expectedOutput.end())); } inline void ImportAndExportWorkload(std::vector backends) { using namespace armnn; IRuntime::CreationOptions options; IRuntimePtr runtime(IRuntime::Create(options)); // Builds up the structure of the network. INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* pooling = net->AddActivationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32, 0.0f, 0, true)); pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); INFO("Load Network"); // Load it into the runtime. It should pass. NetworkId netId; std::string ignoredErrorMessage; INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Malloc); CHECK(runtime->LoadNetwork(netId, std::move(optNet),ignoredErrorMessage, networkProperties) == Status::Success); INFO("Generate Data"); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f }; std::vector outputData(4); std::vector expectedOutput { 1.0f, 4.0f, 9.0f, 16.0f }; INFO("Create Network"); InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())} }; INFO("Get Profiler"); runtime->GetProfiler(netId)->EnableProfiling(true); INFO("Run Inference"); // Do the inference runtime->EnqueueWorkload(netId, inputTensors, outputTensors); INFO("Print Profiler"); // Retrieve the Profiler.Print() output to get the workload execution ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance(); std::stringstream ss; profilerManager.GetProfiler()->Print(ss);; std::string dump = ss.str(); // Check there is a SyncMemGeneric workload as we exported INFO("Find SyncMemGeneric"); int count = SubStringCounter(dump, "SyncMemGeneric"); CHECK(count == 1); // Shouldn't be any CopyMemGeneric workloads INFO("Find CopyMemGeneric"); count = SubStringCounter(dump, "CopyMemGeneric"); CHECK(count == 0); // Check the output is correct CHECK(std::equal(outputData.begin(), outputData.end(), expectedOutput.begin(), expectedOutput.end())); } inline void ExportOutputWithSeveralOutputSlotConnectionsTest(std::vector backends) { using namespace armnn; // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::Square; IConnectableLayer* activation = net->AddActivationLayer(descriptor); IConnectableLayer* output0 = net->AddOutputLayer(0); IConnectableLayer* output1 = net->AddOutputLayer(1); input->GetOutputSlot(0).Connect(activation->GetInputSlot(0)); activation->GetOutputSlot(0).Connect(output0->GetInputSlot(0)); activation->GetOutputSlot(0).Connect(output1->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 1 }, DataType::Float32, 0.0f, 0, true)); activation->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 1 }, DataType::Float32)); // Optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); // Loads it into the runtime. NetworkId netId; std::string ignoredErrorMessage; // Enable Importing INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Malloc); runtime->LoadNetwork(netId, std::move(optNet), ignoredErrorMessage, networkProperties); // Creates structures for input & output std::vector inputData { 1.0f, 2.0f, 3.0f, 4.0f }; std::vector outputData0(4); std::vector outputData1(4); std::vector expectedOutput { 1.0f, 4.0f, 9.0f, 16.0f }; InputTensors inputTensors { {0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}, }; OutputTensors outputTensors { {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData0.data())}, {1,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 1), outputData1.data())} }; // The result of the inference is not important, just the fact that there // should not be CopyMemGeneric workloads. runtime->GetProfiler(netId)->EnableProfiling(true); // Do the inference runtime->EnqueueWorkload(netId, inputTensors, outputTensors); // Retrieve the Profiler.Print() output to get the workload execution ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance(); std::stringstream ss; profilerManager.GetProfiler()->Print(ss); std::string dump = ss.str(); std::size_t found = std::string::npos; if (backends[0] == Compute::CpuRef) { found = dump.find("RefActivationWorkload"); } else if (backends[0] == Compute::CpuAcc) { found = dump.find("NeonActivationWorkload"); } else if (backends[0] == Compute::GpuAcc) { found = dump.find("ClActivationWorkload"); } CHECK(found != std::string::npos); // No contains SyncMemGeneric found = dump.find("SyncMemGeneric"); CHECK(found == std::string::npos); // Contains CopyMemGeneric found = dump.find("CopyMemGeneric"); CHECK(found != std::string::npos); // Check that the outputs are correct CHECK(std::equal(outputData0.begin(), outputData0.end(), expectedOutput.begin(), expectedOutput.end())); CHECK(std::equal(outputData1.begin(), outputData1.end(), expectedOutput.begin(), expectedOutput.end())); } inline void StridedSliceInvalidSliceEndToEndTest(std::vector backends) { using namespace armnn; // Create runtime in which test will run IRuntime::CreationOptions options; IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); // Configure a strided slice with a stride the same size as the input but with a ShrinkAxisMask on the first // dim of the output to make it too small to hold the specified slice. StridedSliceDescriptor descriptor; descriptor.m_Begin = {0, 0}; descriptor.m_End = {2, 3}; descriptor.m_Stride = {1, 1}; descriptor.m_BeginMask = 0; descriptor.m_EndMask = 0; descriptor.m_ShrinkAxisMask = 1; IConnectableLayer* stridedSlice = net->AddStridedSliceLayer(descriptor); IConnectableLayer* output0 = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(stridedSlice->GetInputSlot(0)); stridedSlice->GetOutputSlot(0).Connect(output0->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 2, 3 }, DataType::Float32, 0.0f, 0, true)); stridedSlice->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 3 }, DataType::Float32)); // Attempt to optimize the network and check that the correct exception is thrown CHECK_THROWS_AS(Optimize(*net, backends, runtime->GetDeviceSpec()), armnn::LayerValidationException); } } // anonymous namespace