// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #include #include #include #include #include #include #include #ifdef WITH_VALGRIND #include #endif #include namespace armnn { void RuntimeLoadedNetworksReserve(armnn::Runtime* runtime) { runtime->m_LoadedNetworks.reserve(1); } } BOOST_AUTO_TEST_SUITE(Runtime) BOOST_AUTO_TEST_CASE(RuntimeUnloadNetwork) { // build 2 mock-networks and load them into the runtime armnn::IRuntime::CreationOptions options; armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options)); // Mock network 1. armnn::NetworkId networkIdentifier1 = 1; armnn::INetworkPtr mockNetwork1(armnn::INetwork::Create()); mockNetwork1->AddInputLayer(0, "test layer"); std::vector backends = {armnn::Compute::CpuRef}; runtime->LoadNetwork(networkIdentifier1, Optimize(*mockNetwork1, backends, runtime->GetDeviceSpec())); // Mock network 2. armnn::NetworkId networkIdentifier2 = 2; armnn::INetworkPtr mockNetwork2(armnn::INetwork::Create()); mockNetwork2->AddInputLayer(0, "test layer"); runtime->LoadNetwork(networkIdentifier2, Optimize(*mockNetwork2, backends, runtime->GetDeviceSpec())); // Unloads one by its networkID. BOOST_TEST(runtime->UnloadNetwork(networkIdentifier1) == armnn::Status::Success); BOOST_TEST(runtime->UnloadNetwork(networkIdentifier1) == armnn::Status::Failure); } // Note: the current builds we don't do valgrind and gperftools based leak checking at the same // time, so in practice WITH_VALGRIND and ARMNN_LEAK_CHECKING_ENABLED are exclusive. The // valgrind tests can stay for x86 builds, but on hikey Valgrind is just way too slow // to be integrated into the CI system. #ifdef ARMNN_LEAK_CHECKING_ENABLED struct DisableGlobalLeakChecking { DisableGlobalLeakChecking() { ARMNN_LOCAL_LEAK_CHECKING_ONLY(); } }; BOOST_GLOBAL_FIXTURE(DisableGlobalLeakChecking); BOOST_AUTO_TEST_CASE(RuntimeHeapMemoryUsageSanityChecks) { BOOST_TEST(ARMNN_LEAK_CHECKER_IS_ACTIVE()); { ARMNN_SCOPED_LEAK_CHECKER("Sanity_Check_Outer"); { ARMNN_SCOPED_LEAK_CHECKER("Sanity_Check_Inner"); BOOST_TEST(ARMNN_NO_LEAKS_IN_SCOPE() == true); std::unique_ptr dummyAllocation(new char[1000]); BOOST_CHECK_MESSAGE(ARMNN_NO_LEAKS_IN_SCOPE() == false, "A leak of 1000 bytes is expected here. " "Please make sure environment variable: HEAPCHECK=draconian is set!"); BOOST_TEST(ARMNN_BYTES_LEAKED_IN_SCOPE() == 1000); BOOST_TEST(ARMNN_OBJECTS_LEAKED_IN_SCOPE() == 1); } BOOST_TEST(ARMNN_NO_LEAKS_IN_SCOPE()); BOOST_TEST(ARMNN_BYTES_LEAKED_IN_SCOPE() == 0); BOOST_TEST(ARMNN_OBJECTS_LEAKED_IN_SCOPE() == 0); } } #endif // ARMNN_LEAK_CHECKING_ENABLED // Note: this part of the code is due to be removed when we fully trust the gperftools based results. #ifdef WITH_VALGRIND // Run with the following command to get all the amazing output (in the devenv/build folder) :) // valgrind --leak-check=full --show-leak-kinds=all --log-file=Valgrind_Memcheck_Leak_Report.txt armnn/test/UnitTests BOOST_AUTO_TEST_CASE(RuntimeMemoryLeak) { // From documentation: // This means that no pointer to the block can be found. The block is classified as "lost", // because the programmer could not possibly have freed it at program exit, since no pointer to it exists. unsigned long leakedBefore = 0; unsigned long leakedAfter = 0; // A start-pointer or chain of start-pointers to the block is found. Since the block is still pointed at, // the programmer could, at least in principle, have freed it before program exit. // We want to test this in case memory is not freed as early as it could have been. unsigned long reachableBefore = 0; unsigned long reachableAfter = 0; // Needed as out params but we don't test them. unsigned long dubious = 0; unsigned long suppressed = 0; armnn::NetworkId networkIdentifier1 = 1; // ensure that runtime is large enough before checking for memory leaks // otherwise when loading the network it will automatically reserve memory that won't be released until destruction armnn::IRuntime::CreationOptions options; armnn::Runtime runtime(options); armnn::RuntimeLoadedNetworksReserve(&runtime); { std::vector backends = {armnn::Compute::CpuRef}; std::unique_ptr mockNetwork1 = std::make_unique(); mockNetwork1->AddInputLayer(0, "test layer"); // Warm-up load/unload pair to put the runtime in a stable state (memory-wise). runtime.LoadNetwork(networkIdentifier1, Optimize(*mockNetwork1, backends, runtime.GetDeviceSpec())); runtime.UnloadNetwork(networkIdentifier1); // Checks for leaks before we load the network and record them so that we can see the delta after unloading. VALGRIND_DO_QUICK_LEAK_CHECK; VALGRIND_COUNT_LEAKS(leakedBefore, dubious, reachableBefore, suppressed); // The actual test. runtime.LoadNetwork(networkIdentifier1, Optimize(*mockNetwork1, backends, runtime.GetDeviceSpec())); runtime.UnloadNetwork(networkIdentifier1); VALGRIND_DO_ADDED_LEAK_CHECK; VALGRIND_COUNT_LEAKS(leakedAfter, dubious, reachableAfter, suppressed); } // If we're not running under Valgrind, these vars will have been initialised to 0, so this will always pass. BOOST_TEST(leakedBefore == leakedAfter); BOOST_TEST(reachableBefore == reachableAfter); // These are needed because VALGRIND_COUNT_LEAKS is a macro that assigns to the parameters // so they are assigned to, but still considered unused, causing a warning. boost::ignore_unused(dubious); boost::ignore_unused(suppressed); } #endif // WITH_VALGRIND BOOST_AUTO_TEST_CASE(RuntimeCpuRef) { using namespace armnn; // Create runtime in which test will run armnn::IRuntime::CreationOptions options; armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); // This layer configuration isn't supported by CpuAcc, should be fall back to CpuRef. NormalizationDescriptor descriptor; IConnectableLayer* normalize = net->AddNormalizationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(normalize->GetInputSlot(0)); normalize->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32)); normalize->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32)); // optimize the network std::vector backends = { armnn::Compute::CpuRef }; IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); // Load it into the runtime. It should success. armnn::NetworkId netId; BOOST_TEST(runtime->LoadNetwork(netId, std::move(optNet)) == Status::Success); } BOOST_AUTO_TEST_CASE(RuntimeFallbackToCpuRef) { using namespace armnn; // Create runtime in which test will run armnn::IRuntime::CreationOptions options; armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0); // This layer configuration isn't supported by CpuAcc, should be fall back to CpuRef. NormalizationDescriptor descriptor; IConnectableLayer* normalize = net->AddNormalizationLayer(descriptor); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(normalize->GetInputSlot(0)); normalize->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32)); normalize->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32)); // Allow fallback to CpuRef. std::vector backends = { armnn::Compute::CpuAcc, armnn::Compute::CpuRef }; // optimize the network IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec()); // Load it into the runtime. It should succeed. armnn::NetworkId netId; BOOST_TEST(runtime->LoadNetwork(netId, std::move(optNet)) == Status::Success); } BOOST_AUTO_TEST_CASE(IVGCVSW_1929_QuantizedSoftmaxIssue) { // Test for issue reported by Chris Nix in https://jira.arm.com/browse/IVGCVSW-1929 using namespace armnn; // Create runtime in which test will run armnn::IRuntime::CreationOptions options; armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options)); // build up the structure of the network INetworkPtr net(INetwork::Create()); armnn::IConnectableLayer* input = net->AddInputLayer( 0, "input" ); armnn::IConnectableLayer* softmax = net->AddSoftmaxLayer( armnn::SoftmaxDescriptor(), "softmax" ); armnn::IConnectableLayer* output = net->AddOutputLayer( 0, "output" ); input->GetOutputSlot(0).Connect(softmax->GetInputSlot(0)); softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo( armnn::TensorShape({ 1, 5 }), armnn::DataType::QuantisedAsymm8, 1.0f/255, 0 )); softmax->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo( armnn::TensorShape({ 1, 5 }), armnn::DataType::QuantisedAsymm8 )); std::vector backends = {armnn::Compute::CpuRef}; std::vector errMessages; armnn::IOptimizedNetworkPtr optNet = Optimize( *net, backends, runtime->GetDeviceSpec(), OptimizerOptions(), errMessages ); BOOST_TEST(errMessages.size() == 1); BOOST_TEST(errMessages[0] == "ERROR: output 0 of layer Softmax (softmax) is of type " "Quantized 8 bit but its scale parameter has not been set"); BOOST_TEST(!optNet); } BOOST_AUTO_TEST_SUITE_END()