// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include #include #include #include #include #include #include using namespace armnn; namespace { using namespace std; // Calls CreateWorkload for a layer, and checks the returned pointer is of the correct type. template std::unique_ptr MakeAndCheckWorkload(Layer& layer, Graph& graph, const IWorkloadFactory& factory) { std::unique_ptr workload = layer.CreateWorkload(graph, factory); BOOST_TEST(workload.get() == boost::polymorphic_downcast(workload.get()), "Cannot convert to derived class"); std::string reasonIfUnsupported; layer.SetBackendId(factory.GetCompute()); BOOST_TEST(factory.IsLayerSupported(layer, layer.GetDataType(), reasonIfUnsupported)); return std::unique_ptr(static_cast(workload.release())); } // Connects two layers. void Connect(Layer* from, Layer* to, const TensorInfo& tensorInfo, unsigned int fromIndex = 0, unsigned int toIndex = 0) { from->GetOutputSlot(fromIndex).Connect(to->GetInputSlot(toIndex)); from->GetOutputHandler(fromIndex).SetTensorInfo(tensorInfo); } // Helper function to create tensor handlers for workloads, assuming they all use the same factory. void CreateTensorHandles(armnn::Graph& graph, armnn::IWorkloadFactory& factory) { for (auto&& layer : graph.TopologicalSort()) { layer->CreateTensorHandles(graph, factory); } } ///////////////////////////////////////////////////////////////////////////////////////////// // The following functions are called by backends/test/CreateWorkload*.cpp // They build very simple graphs, and then create a workload. // Some checks are performed on the workload to ensure parameters have been passed correctly. // They return the created workloads so that backend-specific checks can be performed. ///////////////////////////////////////////////////////////////////////////////////////////// template std::unique_ptr CreateActivationWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. ActivationDescriptor layerDesc; layerDesc.m_Function = ActivationFunction::Abs; layerDesc.m_A = 3.5f; layerDesc.m_B = -10.0f; ActivationLayer* const layer = graph.AddLayer(layerDesc, "layer"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. armnn::TensorInfo tensorInfo({1, 1}, DataType); Connect(input, layer, tensorInfo); Connect(layer, output, tensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); ActivationQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_A == 3.5f); BOOST_TEST(queueDescriptor.m_Parameters.m_B == -10.0f); BOOST_TEST((queueDescriptor.m_Parameters.m_Function == ActivationFunction::Abs)); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateArithmeticWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. Layer* const layer = graph.AddLayer("layer"); // Creates extra layers. Layer* const input1 = graph.AddLayer(1, "input1"); Layer* const input2 = graph.AddLayer(2, "input2"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. armnn::TensorInfo tensorInfo({2, 3}, DataType); Connect(input1, layer, tensorInfo, 0, 0); Connect(input2, layer, tensorInfo, 0, 1); Connect(layer, output, tensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); DescriptorType queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 2); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateBatchNormalizationWorkloadTest( armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayoutIndexed dataLayout = DataLayout::NCHW) { TensorShape tensorShape; switch (dataLayout.GetDataLayout()) { case DataLayout::NHWC: tensorShape = { 2, 4, 4, 3 }; break; case DataLayout::NCHW: default: tensorShape = { 2, 3, 4, 4 }; } // Creates the layer we're testing. BatchNormalizationDescriptor layerDesc; layerDesc.m_Eps = 0.05f; layerDesc.m_DataLayout = dataLayout; BatchNormalizationLayer* const layer = graph.AddLayer(layerDesc, "layer"); armnn::TensorInfo weightInfo({3}, DataType); layer->m_Mean = std::make_unique(weightInfo); layer->m_Variance = std::make_unique(weightInfo); layer->m_Beta = std::make_unique(weightInfo); layer->m_Gamma = std::make_unique(weightInfo); layer->m_Mean->Allocate(); layer->m_Variance->Allocate(); layer->m_Beta->Allocate(); layer->m_Gamma->Allocate(); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); //Connects up. armnn::TensorInfo tensorInfo(tensorShape, DataType); Connect(input, layer, tensorInfo); Connect(layer, output, tensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); BatchNormalizationQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Parameters.m_Eps == 0.05f); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST((queueDescriptor.m_Mean->GetTensorInfo() == TensorInfo({3}, DataType))); BOOST_TEST((queueDescriptor.m_Variance->GetTensorInfo() == TensorInfo({3}, DataType))); BOOST_TEST((queueDescriptor.m_Gamma->GetTensorInfo() == TensorInfo({3}, DataType))); BOOST_TEST((queueDescriptor.m_Beta->GetTensorInfo() == TensorInfo({3}, DataType))); BOOST_TEST((queueDescriptor.m_Parameters.m_DataLayout.GetDataLayout() == dataLayout)); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateConvolution2dWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayout dataLayout = DataLayout::NCHW) { // Creates the layer we're testing. Convolution2dDescriptor layerDesc; layerDesc.m_PadLeft = 3; layerDesc.m_PadRight = 3; layerDesc.m_PadTop = 1; layerDesc.m_PadBottom = 1; layerDesc.m_StrideX = 2; layerDesc.m_StrideY = 4; layerDesc.m_BiasEnabled = true; layerDesc.m_DataLayout = dataLayout; Convolution2dLayer* const layer = graph.AddLayer(layerDesc, "layer"); TensorShape weightShape = (dataLayout == DataLayout::NCHW) ? TensorShape{2, 3, 5, 3} : TensorShape{2, 5, 3, 3}; TensorShape inputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{2, 3, 8, 16} : TensorShape{2, 8, 16, 3}; TensorShape outputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{2, 2, 2, 10} : TensorShape{2, 2, 10, 2}; layer->m_Weight = std::make_unique(TensorInfo(weightShape, DataType)); layer->m_Bias = std::make_unique(TensorInfo({2}, GetBiasDataType(DataType))); layer->m_Weight->Allocate(); layer->m_Bias->Allocate(); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. Connect(input, layer, TensorInfo(inputShape, DataType)); Connect(layer, output, TensorInfo(outputShape, DataType)); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); Convolution2dQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideX == 2); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideY == 4); BOOST_TEST(queueDescriptor.m_Parameters.m_PadLeft == 3); BOOST_TEST(queueDescriptor.m_Parameters.m_PadRight == 3); BOOST_TEST(queueDescriptor.m_Parameters.m_PadTop == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadBottom == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_BiasEnabled); BOOST_TEST((queueDescriptor.m_Parameters.m_DataLayout == dataLayout)); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST((queueDescriptor.m_Weight->GetTensorInfo() == TensorInfo(weightShape, DataType))); BOOST_TEST((queueDescriptor.m_Bias->GetTensorInfo() == TensorInfo({2}, GetBiasDataType(DataType)))); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateLstmWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // This parameter setting is for withCifgWithPeepholeNoProjection LstmDescriptor layerDesc; layerDesc.m_ActivationFunc = 4; layerDesc.m_ClippingThresCell = 0.0f; layerDesc.m_ClippingThresProj = 0.0f; layerDesc.m_CifgEnabled = true; layerDesc.m_PeepholeEnabled = true; layerDesc.m_ProjectionEnabled = false; LstmLayer* const layer = graph.AddLayer(layerDesc, "layer"); unsigned int batchSize = 2; unsigned int inputSize = 2; unsigned int numUnits = 4; unsigned int outputSize = 4; layer->m_BasicParameters.m_InputToForgetWeights = std::make_unique (TensorInfo({ numUnits, inputSize }, DataType::Float32)); layer->m_BasicParameters.m_InputToCellWeights = std::make_unique (TensorInfo({ numUnits, inputSize }, DataType::Float32)); layer->m_BasicParameters.m_InputToOutputWeights = std::make_unique (TensorInfo({ numUnits, inputSize }, DataType::Float32)); layer->m_BasicParameters.m_RecurrentToForgetWeights = std::make_unique (TensorInfo({ numUnits, outputSize }, DataType::Float32)); layer->m_BasicParameters.m_RecurrentToCellWeights = std::make_unique (TensorInfo({ numUnits, outputSize }, DataType::Float32)); layer->m_BasicParameters.m_RecurrentToOutputWeights = std::make_unique (TensorInfo({ numUnits, outputSize }, DataType::Float32)); layer->m_BasicParameters.m_ForgetGateBias = std::make_unique (TensorInfo({ numUnits }, DataType::Float32)); layer->m_BasicParameters.m_CellBias = std::make_unique (TensorInfo({ numUnits }, DataType::Float32)); layer->m_BasicParameters.m_OutputGateBias = std::make_unique (TensorInfo({ numUnits }, DataType::Float32)); layer->m_BasicParameters.m_InputToForgetWeights->Allocate(); layer->m_BasicParameters.m_InputToCellWeights->Allocate(); layer->m_BasicParameters.m_InputToOutputWeights->Allocate(); layer->m_BasicParameters.m_RecurrentToForgetWeights->Allocate(); layer->m_BasicParameters.m_RecurrentToCellWeights->Allocate(); layer->m_BasicParameters.m_RecurrentToOutputWeights->Allocate(); layer->m_BasicParameters.m_ForgetGateBias->Allocate(); layer->m_BasicParameters.m_CellBias->Allocate(); layer->m_BasicParameters.m_OutputGateBias->Allocate(); if (layerDesc.m_PeepholeEnabled) { layer->m_PeepholeParameters.m_CellToForgetWeights = std::make_unique (TensorInfo({ numUnits }, DataType::Float32)); layer->m_PeepholeParameters.m_CellToOutputWeights = std::make_unique (TensorInfo({ numUnits }, DataType::Float32)); layer->m_PeepholeParameters.m_CellToForgetWeights->Allocate(); layer->m_PeepholeParameters.m_CellToOutputWeights->Allocate(); } // create input and output layers Layer* const input = graph.AddLayer(0, "input"); Layer* const outputStateIn = graph.AddLayer(1, "outputStateIn"); Layer* const cellStateIn = graph.AddLayer(2, "cellStateIn"); Layer* const scratchBuffer = graph.AddLayer(0, "scratchBuffer"); Layer* const outputStateOut = graph.AddLayer(1, "outputStateOut"); Layer* const cellStateOut = graph.AddLayer(2, "cellStateOut"); Layer* const output = graph.AddLayer(3, "output"); // connect up armnn::TensorInfo lstmTensorInfo1({ batchSize, inputSize }, DataType::Float32); armnn::TensorInfo lstmTensorInfo2({ batchSize, numUnits}, DataType::Float32); armnn::TensorInfo lstmTensorInfo3({ batchSize, outputSize }, DataType::Float32); armnn::TensorInfo lstmTensorInfoScratchBuff({ batchSize, numUnits*3 }, DataType::Float32); if (layerDesc.m_CifgEnabled) { lstmTensorInfoScratchBuff.SetShape({ batchSize, numUnits*4 }); } Connect(input, layer, lstmTensorInfo1, 0, 0); Connect(cellStateIn, layer, lstmTensorInfo2, 0, 1); Connect(outputStateIn, layer, lstmTensorInfo3, 0, 2); Connect(layer, scratchBuffer, lstmTensorInfoScratchBuff, 0, 0); Connect(layer, outputStateOut, lstmTensorInfo3, 1, 0); Connect(layer, cellStateOut, lstmTensorInfo2, 2, 0); Connect(layer, output, lstmTensorInfo3, 3, 0); CreateTensorHandles(graph, factory); // make the workload and check it auto workload = MakeAndCheckWorkload(*layer, graph, factory); LstmQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Parameters.m_ActivationFunc == 4); BOOST_TEST(queueDescriptor.m_Parameters.m_ClippingThresCell == 0.0f); BOOST_TEST(queueDescriptor.m_Parameters.m_ClippingThresProj == 0.0f); BOOST_TEST(queueDescriptor.m_Inputs.size() == 3); BOOST_TEST(queueDescriptor.m_Outputs.size() == 4); BOOST_TEST((queueDescriptor.m_InputToForgetWeights->GetTensorInfo() == TensorInfo({ numUnits, inputSize }, DataType::Float32))); BOOST_TEST((queueDescriptor.m_OutputGateBias->GetTensorInfo() == TensorInfo({ numUnits }, DataType::Float32))); BOOST_TEST((queueDescriptor.m_CellBias->GetTensorInfo() == TensorInfo({ numUnits }, DataType::Float32))); return workload; } template std::unique_ptr CreateDirectConvolution2dWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. Convolution2dDescriptor layerDesc; layerDesc.m_PadLeft = 1; layerDesc.m_PadRight = 1; layerDesc.m_PadTop = 1; layerDesc.m_PadBottom = 1; layerDesc.m_StrideX = 1; layerDesc.m_StrideY = 1; layerDesc.m_BiasEnabled = true; Convolution2dLayer* const layer = graph.AddLayer(layerDesc, "layer"); float inputsQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 1.0f : 0.0; float outputQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 2.0f : 0.0; layer->m_Weight = std::make_unique(TensorInfo({ 2, 3, 3, 3 }, DataType, inputsQScale)); layer->m_Bias = std::make_unique (TensorInfo({2}, GetBiasDataType(DataType), inputsQScale)); layer->m_Weight->Allocate(); layer->m_Bias->Allocate(); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. Connect(input, layer, TensorInfo({2, 3, 6, 6}, DataType, inputsQScale)); Connect(layer, output, TensorInfo({2, 2, 6, 6}, DataType, outputQScale)); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); Convolution2dQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideX == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideY == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadLeft == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadRight == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadTop == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadBottom == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_BiasEnabled == true); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST((queueDescriptor.m_Weight->GetTensorInfo() == TensorInfo({2, 3, 3, 3}, DataType, inputsQScale))); BOOST_TEST((queueDescriptor.m_Bias->GetTensorInfo() == TensorInfo({2}, GetBiasDataType(DataType), inputsQScale))); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateDepthwiseConvolution2dWorkloadTest( armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayout dataLayout = DataLayout::NCHW) { // Creates the layer we're testing. DepthwiseConvolution2dDescriptor layerDesc; layerDesc.m_PadLeft = 1; layerDesc.m_PadRight = 2; layerDesc.m_PadTop = 1; layerDesc.m_PadBottom = 2; layerDesc.m_StrideX = 1; layerDesc.m_StrideY = 1; layerDesc.m_BiasEnabled = false; layerDesc.m_DataLayout = dataLayout; DepthwiseConvolution2dLayer* const layer = graph.AddLayer(layerDesc, "layer"); layer->m_Weight = std::make_unique(TensorInfo({1, 4, 4, 2}, DataType)); layer->m_Weight->Allocate(); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); TensorShape inputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{ 2, 2, 5, 5 } : TensorShape{ 2, 5, 5, 2 }; TensorShape outputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{ 2, 2, 5, 5 } : TensorShape{ 2, 5, 5, 2 }; // Connects up. Connect(input, layer, TensorInfo(inputShape, DataType)); Connect(layer, output, TensorInfo(outputShape, DataType)); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); DepthwiseConvolution2dQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideX == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideY == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadLeft == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadRight == 2); BOOST_TEST(queueDescriptor.m_Parameters.m_PadTop == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadBottom == 2); BOOST_TEST(queueDescriptor.m_Parameters.m_BiasEnabled == false); BOOST_TEST((queueDescriptor.m_Parameters.m_DataLayout == dataLayout)); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST((queueDescriptor.m_Weight->GetTensorInfo() == TensorInfo({1, 4, 4, 2}, DataType))); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateFullyConnectedWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. FullyConnectedDescriptor layerDesc; layerDesc.m_BiasEnabled = true; layerDesc.m_TransposeWeightMatrix = true; FullyConnectedLayer* const layer = graph.AddLayer(layerDesc, "layer"); float inputsQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 1.0f : 0.0; float outputQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 2.0f : 0.0; layer->m_Weight = std::make_unique(TensorInfo({7, 20}, DataType, inputsQScale, 0)); layer->m_Bias = std::make_unique(TensorInfo({7}, GetBiasDataType(DataType), inputsQScale)); layer->m_Weight->Allocate(); layer->m_Bias->Allocate(); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. Connect(input, layer, TensorInfo({3, 1, 4, 5}, DataType, inputsQScale)); Connect(layer, output, TensorInfo({3, 7}, DataType, outputQScale)); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); FullyConnectedQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Parameters.m_BiasEnabled == true); BOOST_TEST(queueDescriptor.m_Parameters.m_TransposeWeightMatrix == true); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST((queueDescriptor.m_Weight->GetTensorInfo() == TensorInfo({7, 20}, DataType, inputsQScale))); BOOST_TEST((queueDescriptor.m_Bias->GetTensorInfo() == TensorInfo({7}, GetBiasDataType(DataType), inputsQScale))); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateNormalizationWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayout dataLayout = DataLayout::NCHW) { // Creates the layer we're testing. NormalizationDescriptor layerDesc; layerDesc.m_NormChannelType = NormalizationAlgorithmChannel::Across; layerDesc.m_NormMethodType = NormalizationAlgorithmMethod::LocalBrightness; layerDesc.m_NormSize = 3; layerDesc.m_Alpha = 0.5f; layerDesc.m_Beta = -1.0f; layerDesc.m_K = 0.2f; layerDesc.m_DataLayout = dataLayout; NormalizationLayer* layer = graph.AddLayer(layerDesc, "layer"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); TensorShape inputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{ 3, 5, 5, 1 } : TensorShape{ 3, 1, 5, 5 }; TensorShape outputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{ 3, 5, 5, 1 } : TensorShape{ 3, 1, 5, 5 }; // Connects up. armnn::TensorInfo inputTensorInfo(inputShape, DataType); armnn::TensorInfo outputTensorInfo(outputShape, DataType); Connect(input, layer, inputTensorInfo); Connect(layer, output, outputTensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); NormalizationQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST((queueDescriptor.m_Parameters.m_NormChannelType == NormalizationAlgorithmChannel::Across)); BOOST_TEST((queueDescriptor.m_Parameters.m_NormMethodType == NormalizationAlgorithmMethod::LocalBrightness)); BOOST_TEST(queueDescriptor.m_Parameters.m_NormSize == 3); BOOST_TEST(queueDescriptor.m_Parameters.m_Alpha == 0.5f); BOOST_TEST(queueDescriptor.m_Parameters.m_Beta == -1.0f); BOOST_TEST(queueDescriptor.m_Parameters.m_K == 0.2f); BOOST_TEST((queueDescriptor.m_Parameters.m_DataLayout == dataLayout)); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreatePooling2dWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayout dataLayout = DataLayout::NCHW) { // Creates the layer we're testing. Pooling2dDescriptor layerDesc; layerDesc.m_PoolType = PoolingAlgorithm::Average; layerDesc.m_PoolWidth = 3; layerDesc.m_PoolHeight = 3; layerDesc.m_PadLeft = 2; layerDesc.m_PadRight = 2; layerDesc.m_PadTop = 1; layerDesc.m_PadBottom = 1; layerDesc.m_StrideX = 2; layerDesc.m_StrideY = 3; layerDesc.m_OutputShapeRounding = OutputShapeRounding::Floor; layerDesc.m_DataLayout = dataLayout; Pooling2dLayer* const layer = graph.AddLayer(layerDesc, "layer"); // Create extra layers Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); TensorShape inputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{3, 2, 5, 5} : TensorShape{3, 5, 5, 2}; TensorShape outputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{3, 2, 2, 4} : TensorShape{3, 2, 4, 2}; // Connect up Connect(input, layer, TensorInfo(inputShape, DataType)); Connect(layer, output, TensorInfo(outputShape, DataType)); CreateTensorHandles(graph, factory); // Make the workload and checks it auto workload = MakeAndCheckWorkload(*layer, graph, factory); Pooling2dQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST((queueDescriptor.m_Parameters.m_PoolType == PoolingAlgorithm::Average)); BOOST_TEST((queueDescriptor.m_Parameters.m_OutputShapeRounding == OutputShapeRounding::Floor)); BOOST_TEST(queueDescriptor.m_Parameters.m_PoolWidth == 3); BOOST_TEST(queueDescriptor.m_Parameters.m_PoolHeight == 3); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideX == 2); BOOST_TEST(queueDescriptor.m_Parameters.m_StrideY == 3); BOOST_TEST(queueDescriptor.m_Parameters.m_PadLeft == 2); BOOST_TEST(queueDescriptor.m_Parameters.m_PadRight == 2); BOOST_TEST(queueDescriptor.m_Parameters.m_PadTop == 1); BOOST_TEST(queueDescriptor.m_Parameters.m_PadBottom == 1); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Return so we can do extra, backend-specific tests return workload; } template std::unique_ptr CreateSoftmaxWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Create the layer we're testing. SoftmaxDescriptor softmaxDescriptor; Layer* const layer = graph.AddLayer(softmaxDescriptor, "layer"); // Create extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connect up armnn::TensorInfo tensorInfo({4, 1}, DataType); Connect(input, layer, tensorInfo); Connect(layer, output, tensorInfo); CreateTensorHandles(graph, factory); // Make the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); SoftmaxQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Return so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateSplitterWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Create the layer we're testing. // NOTE: need three dimensions channels, height/y, width/x because the Compute // library restricts subtensors to have the same x and y dimensions as // their parent tensors, and therefore the origin on the x and y dimension // has to be zero for any view. So we need a third dimension to split... // NOTE: arguments are: number of views, number of dimensions. ViewsDescriptor layerDesc(3, 3); // NOTE: arguments are: view, dimension, value. layerDesc.SetViewOriginCoord(0, 0, 0); layerDesc.SetViewOriginCoord(1, 0, 1); layerDesc.SetViewOriginCoord(2, 0, 3); Layer* const layer = graph.AddLayer(layerDesc, "layer"); // Adds extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output0 = graph.AddLayer(0, "output0"); Layer* const output1 = graph.AddLayer(1, "output1"); Layer* const output2 = graph.AddLayer(2, "output2"); // Connects up. armnn::TensorInfo tensorInfo({5, 7, 7}, DataType); Connect(input, layer, tensorInfo); armnn::TensorInfo output0Info({1, 7, 7}, DataType); armnn::TensorInfo output1Info({2, 7, 7}, DataType); armnn::TensorInfo output2Info({2, 7, 7}, DataType); Connect(layer, output0, output0Info, 0, 0); Connect(layer, output1, output1Info, 1, 0); Connect(layer, output2, output2Info, 2, 0); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); SplitterQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 3); BOOST_TEST(queueDescriptor.m_ViewOrigins.size() == 3); BOOST_TEST(queueDescriptor.m_ViewOrigins[0].m_Origin[0] == 0); BOOST_TEST(queueDescriptor.m_ViewOrigins[1].m_Origin[0] == 1); BOOST_TEST(queueDescriptor.m_ViewOrigins[2].m_Origin[0] == 3); BOOST_TEST(queueDescriptor.m_ViewOrigins[0].m_Origin[1] == 0); BOOST_TEST(queueDescriptor.m_ViewOrigins[1].m_Origin[1] == 0); BOOST_TEST(queueDescriptor.m_ViewOrigins[2].m_Origin[1] == 0); BOOST_TEST(queueDescriptor.m_ViewOrigins[0].m_Origin[2] == 0); BOOST_TEST(queueDescriptor.m_ViewOrigins[1].m_Origin[2] == 0); BOOST_TEST(queueDescriptor.m_ViewOrigins[2].m_Origin[2] == 0); // Returns so we can do extra, backend-specific tests. return workload; } /// This function constructs a graph with both a splitter and a merger, and returns a pair of the workloads. template std::pair, std::unique_ptr> CreateSplitterMergerWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { armnn::TensorInfo inputTensorInfo({ 1, 2, 100, 10 }, DataType); armnn::TensorInfo splitTensorInfo1({ 1, 1, 100, 10 }, DataType); armnn::TensorInfo splitTensorInfo2({ 1, 1, 100, 10 }, DataType); //Constructs the graph. Layer* const input = graph.AddLayer(0, "input"); armnn::ViewsDescriptor splitterViews(2); splitterViews.SetViewOriginCoord(0, 0, 0); splitterViews.SetViewOriginCoord(0, 1, 0); splitterViews.SetViewOriginCoord(0, 2, 0); splitterViews.SetViewOriginCoord(0, 3, 0); splitterViews.SetViewOriginCoord(1, 0, 0); splitterViews.SetViewOriginCoord(1, 1, 1); splitterViews.SetViewOriginCoord(1, 2, 0); splitterViews.SetViewOriginCoord(1, 3, 0); Layer* const splitter = graph.AddLayer(splitterViews, "splitter"); BOOST_TEST_CHECKPOINT("created splitter layer"); armnn::OriginsDescriptor mergerViews(2); mergerViews.SetViewOriginCoord(0, 0, 0); mergerViews.SetViewOriginCoord(0, 1, 1); mergerViews.SetViewOriginCoord(0, 2, 0); mergerViews.SetViewOriginCoord(0, 3, 0); mergerViews.SetViewOriginCoord(1, 0, 0); mergerViews.SetViewOriginCoord(1, 1, 0); mergerViews.SetViewOriginCoord(1, 2, 0); mergerViews.SetViewOriginCoord(1, 3, 0); Layer* const merger = graph.AddLayer(mergerViews, "merger"); BOOST_TEST_CHECKPOINT("created merger layer"); Layer* const output = graph.AddLayer(0, "output"); // Adds connections. Connect(input, splitter, inputTensorInfo, 0, 0); BOOST_TEST_CHECKPOINT("connect input to splitter"); Connect(splitter, merger, splitTensorInfo1, 0, 1); // The splitter & merger are connected up. BOOST_TEST_CHECKPOINT("connect splitter[0] to merger[1]"); Connect(splitter, merger, splitTensorInfo2, 1, 0); // So that the outputs are flipped round. BOOST_TEST_CHECKPOINT("connect splitter[1] to merger[0]"); Connect(merger, output, inputTensorInfo, 0, 0); BOOST_TEST_CHECKPOINT("connect merger to output"); CreateTensorHandles(graph, factory); BOOST_TEST_CHECKPOINT("created tensor handles"); auto workloadSplitter = MakeAndCheckWorkload(*splitter, graph, factory); BOOST_TEST_CHECKPOINT("created splitter workload"); auto workloadMerger = MakeAndCheckWorkload(*merger, graph, factory); BOOST_TEST_CHECKPOINT("created merger workload"); return {std::move(workloadSplitter), std::move(workloadMerger)}; } /// This function constructs a graph with a splitter with two outputs. Each of the outputs is then /// connected to two different activation layers template void CreateSplitterMultipleInputsOneOutputWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph, std::unique_ptr& wlSplitter, std::unique_ptr& wlActiv0_0, std::unique_ptr& wlActiv0_1, std::unique_ptr& wlActiv1_0, std::unique_ptr& wlActiv1_1) { armnn::TensorInfo inputTensorInfo ({ 1, 3, 100, 50 }, DataType); armnn::TensorInfo splitTensorInfo1({ 1, 1, 100, 50 }, DataType); armnn::TensorInfo splitTensorInfo2({ 1, 2, 100, 50 }, DataType); //Constructs the graph. Layer* const input = graph.AddLayer(0, "input"); armnn::ViewsDescriptor splitterViews(2); splitterViews.SetViewOriginCoord(0, 0, 0); splitterViews.SetViewOriginCoord(0, 1, 0); splitterViews.SetViewOriginCoord(0, 2, 0); splitterViews.SetViewOriginCoord(0, 3, 0); splitterViews.SetViewOriginCoord(1, 0, 0); splitterViews.SetViewOriginCoord(1, 1, 1); splitterViews.SetViewOriginCoord(1, 2, 0); splitterViews.SetViewOriginCoord(1, 3, 0); Layer* const splitter = graph.AddLayer(splitterViews, "splitter"); armnn::ActivationDescriptor activationDesc; Layer* const activ0_0 = graph.AddLayer(activationDesc, "activ0_0"); Layer* const activ0_1 = graph.AddLayer(activationDesc, "activ0_1"); Layer* const activ1_0 = graph.AddLayer(activationDesc, "activ1_0"); Layer* const activ1_1 = graph.AddLayer(activationDesc, "activ1_1"); Layer* const output1 = graph.AddLayer(1, "output1"); Layer* const output2 = graph.AddLayer(2, "output2"); Layer* const output3 = graph.AddLayer(3, "output3"); Layer* const output4 = graph.AddLayer(4, "output4"); // Adds connections. Connect(input, splitter, inputTensorInfo, 0, 0); Connect(splitter, activ0_0, splitTensorInfo1, 0, 0); Connect(splitter, activ0_1, splitTensorInfo1, 0, 0); Connect(splitter, activ1_0, splitTensorInfo2, 1, 0); Connect(splitter, activ1_1, splitTensorInfo2, 1, 0); Connect(activ0_0, output1, splitTensorInfo1, 0, 0); Connect(activ0_1, output2, splitTensorInfo1, 0, 0); Connect(activ1_0, output3, splitTensorInfo2, 0, 0); Connect(activ1_1, output4, splitTensorInfo2, 0, 0); CreateTensorHandles(graph, factory); auto workloadSplitter = MakeAndCheckWorkload(*splitter, graph, factory); auto workloadActiv0_0 = MakeAndCheckWorkload(*activ0_0, graph, factory); auto workloadActiv0_1 = MakeAndCheckWorkload(*activ0_1, graph, factory); auto workloadActiv1_0 = MakeAndCheckWorkload(*activ1_0, graph, factory); auto workloadActiv1_1 = MakeAndCheckWorkload(*activ1_1, graph, factory); wlSplitter = std::move(workloadSplitter); wlActiv0_0 = std::move(workloadActiv0_0); wlActiv0_1 = std::move(workloadActiv0_1); wlActiv1_0 = std::move(workloadActiv1_0); wlActiv1_1 = std::move(workloadActiv1_1); } template std::unique_ptr CreateResizeBilinearWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayoutIndexed dataLayout = DataLayout::NCHW) { TensorShape inputShape; TensorShape outputShape; switch (dataLayout.GetDataLayout()) { case DataLayout::NHWC: inputShape = { 2, 4, 4, 3 }; outputShape = { 2, 2, 2, 3 }; break; default: // NCHW inputShape = { 2, 3, 4, 4 }; outputShape = { 2, 3, 2, 2 }; } // Creates the layer we're testing. ResizeBilinearDescriptor resizeDesc; resizeDesc.m_TargetWidth = outputShape[dataLayout.GetWidthIndex()]; resizeDesc.m_TargetHeight = outputShape[dataLayout.GetHeightIndex()]; resizeDesc.m_DataLayout = dataLayout; Layer* const layer = graph.AddLayer(resizeDesc, "layer"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. armnn::TensorInfo inputTensorInfo(inputShape, DataType); armnn::TensorInfo outputTensorInfo(outputShape, DataType); Connect(input, layer, inputTensorInfo); Connect(layer, output, outputTensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); ResizeBilinearQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); BOOST_TEST((queueDescriptor.m_Parameters.m_DataLayout.GetDataLayout() == dataLayout)); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateL2NormalizationWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph, DataLayout dataLayout = DataLayout::NCHW) { // Creates the layer we're testing. L2NormalizationDescriptor layerDesc; layerDesc.m_DataLayout = dataLayout; Layer* const layer = graph.AddLayer(layerDesc, "l2norm"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); TensorShape inputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{ 5, 20, 50, 67 } : TensorShape{ 5, 50, 67, 20 }; TensorShape outputShape = (dataLayout == DataLayout::NCHW) ? TensorShape{ 5, 20, 50, 67 } : TensorShape{ 5, 50, 67, 20 }; // Connects up. armnn::TensorInfo inputTensorInfo(inputShape, DataType); armnn::TensorInfo outputTensorInfo(outputShape, DataType); Connect(input, layer, inputTensorInfo); Connect(layer, output, outputTensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); L2NormalizationQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST((queueDescriptor.m_Parameters.m_DataLayout == dataLayout)); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateReshapeWorkloadTest(armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. TensorShape outputShape({ 1, 4 }); ReshapeDescriptor reshapeDesc; reshapeDesc.m_TargetShape = outputShape; Layer* const layer = graph.AddLayer(reshapeDesc, "layer"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. armnn::TensorInfo inputTensorInfo({ 4, 1 }, DataType); armnn::TensorInfo outputTensorInfo(outputShape, DataType); Connect(input, layer, inputTensorInfo); Connect(layer, output, outputTensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); ReshapeQueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateConvertFp16ToFp32WorkloadTest( armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. ConvertFp16ToFp32Layer* const layer = graph.AddLayer("Fp16ToFp32Converter"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16); armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32); Connect(input, layer, inputTensorInfo); Connect(layer, output, outputTensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); ConvertFp16ToFp32QueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Returns so we can do extra, backend-specific tests. return workload; } template std::unique_ptr CreateConvertFp32ToFp16WorkloadTest( armnn::IWorkloadFactory& factory, armnn::Graph& graph) { // Creates the layer we're testing. ConvertFp32ToFp16Layer* const layer = graph.AddLayer("Fp32ToFp16Converter"); // Creates extra layers. Layer* const input = graph.AddLayer(0, "input"); Layer* const output = graph.AddLayer(0, "output"); // Connects up. armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32); armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16); Connect(input, layer, inputTensorInfo); Connect(layer, output, outputTensorInfo); CreateTensorHandles(graph, factory); // Makes the workload and checks it. auto workload = MakeAndCheckWorkload(*layer, graph, factory); ConvertFp32ToFp16QueueDescriptor queueDescriptor = workload->GetData(); BOOST_TEST(queueDescriptor.m_Inputs.size() == 1); BOOST_TEST(queueDescriptor.m_Outputs.size() == 1); // Returns so we can do extra, backend-specific tests. return workload; } }