// // Copyright © 2020 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #include "MFCC.hpp" #include "MathUtils.hpp" #include #include #include MfccParams::MfccParams( const float samplingFreq, const int numFbankBins, const float melLoFreq, const float melHiFreq, const int numMfccFeats, const int frameLen, const bool useHtkMethod, const int numMfccVectors): m_samplingFreq(samplingFreq), m_numFbankBins(numFbankBins), m_melLoFreq(melLoFreq), m_melHiFreq(melHiFreq), m_numMfccFeatures(numMfccFeats), m_frameLen(frameLen), m_numMfccVectors(numMfccVectors), /* Smallest power of 2 >= frame length. */ m_frameLenPadded(pow(2, ceil((log(frameLen)/log(2))))), m_useHtkMethod(useHtkMethod) {} std::string MfccParams::Str() { char strC[1024]; snprintf(strC, sizeof(strC) - 1, "\n \ \n\t Sampling frequency: %f\ \n\t Number of filter banks: %u\ \n\t Mel frequency limit (low): %f\ \n\t Mel frequency limit (high): %f\ \n\t Number of MFCC features: %u\ \n\t Frame length: %u\ \n\t Padded frame length: %u\ \n\t Using HTK for Mel scale: %s\n", this->m_samplingFreq, this->m_numFbankBins, this->m_melLoFreq, this->m_melHiFreq, this->m_numMfccFeatures, this->m_frameLen, this->m_frameLenPadded, this->m_useHtkMethod ? "yes" : "no"); return std::string{strC}; } MFCC::MFCC(const MfccParams& params): m_params(params), m_filterBankInitialised(false) { this->m_buffer = std::vector( this->m_params.m_frameLenPadded, 0.0); this->m_frame = std::vector( this->m_params.m_frameLenPadded, 0.0); this->m_melEnergies = std::vector( this->m_params.m_numFbankBins, 0.0); this->m_windowFunc = std::vector(this->m_params.m_frameLen); const auto multiplier = static_cast(2 * M_PI / this->m_params.m_frameLen); /* Create window function. */ for (size_t i = 0; i < this->m_params.m_frameLen; i++) { this->m_windowFunc[i] = (0.5 - (0.5 * cosf(static_cast(i) * multiplier))); } } void MFCC::Init() { this->InitMelFilterBank(); } float MFCC::MelScale(const float freq, const bool useHTKMethod) { if (useHTKMethod) { return 1127.0f * logf (1.0f + freq / 700.0f); } else { /* Slaney formula for mel scale. */ float mel = freq / ms_freqStep; if (freq >= ms_minLogHz) { mel = ms_minLogMel + logf(freq / ms_minLogHz) / ms_logStep; } return mel; } } float MFCC::InverseMelScale(const float melFreq, const bool useHTKMethod) { if (useHTKMethod) { return 700.0f * (expf (melFreq / 1127.0f) - 1.0f); } else { /* Slaney formula for mel scale. */ float freq = ms_freqStep * melFreq; if (melFreq >= ms_minLogMel) { freq = ms_minLogHz * expf(ms_logStep * (melFreq - ms_minLogMel)); } return freq; } } bool MFCC::ApplyMelFilterBank( std::vector& fftVec, std::vector>& melFilterBank, std::vector& filterBankFilterFirst, std::vector& filterBankFilterLast, std::vector& melEnergies) { const size_t numBanks = melEnergies.size(); if (numBanks != filterBankFilterFirst.size() || numBanks != filterBankFilterLast.size()) { printf("unexpected filter bank lengths\n"); return false; } for (size_t bin = 0; bin < numBanks; ++bin) { auto filterBankIter = melFilterBank[bin].begin(); auto end = melFilterBank[bin].end(); float melEnergy = FLT_MIN; /* Avoid log of zero at later stages */ const uint32_t firstIndex = filterBankFilterFirst[bin]; const uint32_t lastIndex = std::min(filterBankFilterLast[bin], fftVec.size() - 1); for (uint32_t i = firstIndex; i <= lastIndex && filterBankIter != end; i++) { float energyRep = sqrt(fftVec[i]); melEnergy += (*filterBankIter++ * energyRep); } melEnergies[bin] = melEnergy; } return true; } void MFCC::ConvertToLogarithmicScale(std::vector& melEnergies) { for (float& melEnergy : melEnergies) { melEnergy = logf(melEnergy); } } void MFCC::ConvertToPowerSpectrum() { const uint32_t halfDim = this->m_buffer.size() / 2; /* Handle this special case. */ float firstEnergy = this->m_buffer[0] * this->m_buffer[0]; float lastEnergy = this->m_buffer[1] * this->m_buffer[1]; MathUtils::ComplexMagnitudeSquaredF32( this->m_buffer.data(), this->m_buffer.size(), this->m_buffer.data(), this->m_buffer.size()/2); this->m_buffer[0] = firstEnergy; this->m_buffer[halfDim] = lastEnergy; } std::vector MFCC::CreateDCTMatrix( const int32_t inputLength, const int32_t coefficientCount) { std::vector dctMatrix(inputLength * coefficientCount); const float normalizer = sqrtf(2.0f/inputLength); const float angleIncr = M_PI/inputLength; float angle = 0; for (int32_t k = 0, m = 0; k < coefficientCount; k++, m += inputLength) { for (int32_t n = 0; n < inputLength; n++) { dctMatrix[m + n] = normalizer * cosf((n + 0.5f) * angle); } angle += angleIncr; } return dctMatrix; } float MFCC::GetMelFilterBankNormaliser( const float& leftMel, const float& rightMel, const bool useHTKMethod) { /* By default, no normalisation => return 1 */ return 1.f; } void MFCC::InitMelFilterBank() { if (!this->IsMelFilterBankInited()) { this->m_melFilterBank = this->CreateMelFilterBank(); this->m_dctMatrix = this->CreateDCTMatrix( this->m_params.m_numFbankBins, this->m_params.m_numMfccFeatures); this->m_filterBankInitialised = true; } } bool MFCC::IsMelFilterBankInited() const { return this->m_filterBankInitialised; } void MFCC::MfccComputePreFeature(const std::vector& audioData) { this->InitMelFilterBank(); auto size = std::min(std::min(this->m_frame.size(), audioData.size()), static_cast(this->m_params.m_frameLen)) * sizeof(float); std::memcpy(this->m_frame.data(), audioData.data(), size); /* Apply window function to input frame. */ for(size_t i = 0; i < this->m_params.m_frameLen; i++) { this->m_frame[i] *= this->m_windowFunc[i]; } /* Set remaining frame values to 0. */ std::fill(this->m_frame.begin() + this->m_params.m_frameLen,this->m_frame.end(), 0); /* Compute FFT. */ MathUtils::FftF32(this->m_frame, this->m_buffer); /* Convert to power spectrum. */ this->ConvertToPowerSpectrum(); /* Apply mel filterbanks. */ if (!this->ApplyMelFilterBank(this->m_buffer, this->m_melFilterBank, this->m_filterBankFilterFirst, this->m_filterBankFilterLast, this->m_melEnergies)) { printf("Failed to apply MEL filter banks\n"); } /* Convert to logarithmic scale. */ this->ConvertToLogarithmicScale(this->m_melEnergies); } std::vector MFCC::MfccCompute(const std::vector& audioData) { this->MfccComputePreFeature(audioData); std::vector mfccOut(this->m_params.m_numMfccFeatures); float * ptrMel = this->m_melEnergies.data(); float * ptrDct = this->m_dctMatrix.data(); float * ptrMfcc = mfccOut.data(); /* Take DCT. Uses matrix mul. */ for (size_t i = 0, j = 0; i < mfccOut.size(); ++i, j += this->m_params.m_numFbankBins) { *ptrMfcc++ = MathUtils::DotProductF32( ptrDct + j, ptrMel, this->m_params.m_numFbankBins); } return mfccOut; } std::vector> MFCC::CreateMelFilterBank() { size_t numFftBins = this->m_params.m_frameLenPadded / 2; float fftBinWidth = static_cast(this->m_params.m_samplingFreq) / this->m_params.m_frameLenPadded; float melLowFreq = MFCC::MelScale(this->m_params.m_melLoFreq, this->m_params.m_useHtkMethod); float melHighFreq = MFCC::MelScale(this->m_params.m_melHiFreq, this->m_params.m_useHtkMethod); float melFreqDelta = (melHighFreq - melLowFreq) / (this->m_params.m_numFbankBins + 1); std::vector thisBin = std::vector(numFftBins); std::vector> melFilterBank( this->m_params.m_numFbankBins); this->m_filterBankFilterFirst = std::vector(this->m_params.m_numFbankBins); this->m_filterBankFilterLast = std::vector(this->m_params.m_numFbankBins); for (size_t bin = 0; bin < this->m_params.m_numFbankBins; bin++) { float leftMel = melLowFreq + bin * melFreqDelta; float centerMel = melLowFreq + (bin + 1) * melFreqDelta; float rightMel = melLowFreq + (bin + 2) * melFreqDelta; uint32_t firstIndex = 0; uint32_t lastIndex = 0; bool firstIndexFound = false; const float normaliser = this->GetMelFilterBankNormaliser(leftMel, rightMel, this->m_params.m_useHtkMethod); for (size_t i = 0; i < numFftBins; i++) { float freq = (fftBinWidth * i); /* Center freq of this fft bin. */ float mel = MFCC::MelScale(freq, this->m_params.m_useHtkMethod); thisBin[i] = 0.0; if (mel > leftMel && mel < rightMel) { float weight; if (mel <= centerMel) { weight = (mel - leftMel) / (centerMel - leftMel); } else { weight = (rightMel - mel) / (rightMel - centerMel); } thisBin[i] = weight * normaliser; if (!firstIndexFound) { firstIndex = i; firstIndexFound = true; } lastIndex = i; } } this->m_filterBankFilterFirst[bin] = firstIndex; this->m_filterBankFilterLast[bin] = lastIndex; /* Copy the part we care about. */ for (uint32_t i = firstIndex; i <= lastIndex; i++) { melFilterBank[bin].push_back(thisBin[i]); } } return melFilterBank; }