// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include #include #include #include "BackendId.hpp" #include "Exceptions.hpp" namespace armnn { constexpr unsigned int MaxNumOfTensorDimensions = 5U; /// @enum Status enumeration /// @var Status::Successful /// @var Status::Failure enum class Status { Success = 0, Failure = 1 }; enum class DataType { Float16 = 0, Float32 = 1, QuantisedAsymm8 = 2, Signed32 = 3, Boolean = 4, QuantisedSymm16 = 5, QuantizedSymm8PerAxis = 6, QuantisedSymm8 = 7 }; enum class DataLayout { NCHW = 1, NHWC = 2 }; enum class ActivationFunction { Sigmoid = 0, TanH = 1, Linear = 2, ReLu = 3, BoundedReLu = 4, ///< min(a, max(b, input)) SoftReLu = 5, LeakyReLu = 6, Abs = 7, Sqrt = 8, Square = 9 }; enum class PoolingAlgorithm { Max = 0, Average = 1, L2 = 2 }; enum class ResizeMethod { Bilinear = 0, NearestNeighbor = 1 }; /// /// The padding method modifies the output of pooling layers. /// In both supported methods, the values are ignored (they are /// not even zeroes, which would make a difference for max pooling /// a tensor with negative values). The difference between /// IgnoreValue and Exclude is that the former counts the padding /// fields in the divisor of Average and L2 pooling, while /// Exclude does not. /// enum class PaddingMethod { /// The padding fields count, but are ignored IgnoreValue = 0, /// The padding fields don't count and are ignored Exclude = 1 }; enum class NormalizationAlgorithmChannel { Across = 0, Within = 1 }; enum class NormalizationAlgorithmMethod { /// Krichevsky 2012: Local Brightness Normalization LocalBrightness = 0, /// Jarret 2009: Local Contrast Normalization LocalContrast = 1 }; enum class OutputShapeRounding { Floor = 0, Ceiling = 1 }; /// Each backend should implement an IBackend. class IBackend { protected: IBackend() {} virtual ~IBackend() {} public: virtual const BackendId& GetId() const = 0; }; using IBackendSharedPtr = std::shared_ptr; using IBackendUniquePtr = std::unique_ptr; /// Device specific knowledge to be passed to the optimizer. class IDeviceSpec { protected: IDeviceSpec() {} virtual ~IDeviceSpec() {} public: virtual const BackendIdSet& GetSupportedBackends() const = 0; }; /// Type of identifiers for bindable layers (inputs, outputs). using LayerBindingId = int; class PermutationVector { public: using ValueType = unsigned int; using SizeType = unsigned int; using ArrayType = std::array; using ConstIterator = typename ArrayType::const_iterator; /// @param dimMappings - Indicates how to translate tensor elements from a given source into the target destination, /// when source and target potentially have different memory layouts. /// /// E.g. For a 4-d tensor laid out in a memory with the format (Batch Element, Height, Width, Channels), /// which is to be passed as an input to ArmNN, each source dimension is mapped to the corresponding /// ArmNN dimension. The Batch dimension remains the same (0 -> 0). The source Height dimension is mapped /// to the location of the ArmNN Height dimension (1 -> 2). Similar arguments are made for the Width and /// Channels (2 -> 3 and 3 -> 1). This will lead to @ref m_DimMappings pointing to the following array: /// [ 0, 2, 3, 1 ]. /// /// Note that the mapping should be reversed if considering the case of ArmNN 4-d outputs (Batch Element, /// Channels, Height, Width) being written to a destination with the format mentioned above. We now have /// 0 -> 0, 2 -> 1, 3 -> 2, 1 -> 3, which, when reordered, lead to the following @ref m_DimMappings contents: /// [ 0, 3, 1, 2 ]. /// PermutationVector(const ValueType *dimMappings, SizeType numDimMappings); PermutationVector(std::initializer_list dimMappings); ValueType operator[](SizeType i) const { return m_DimMappings.at(i); } SizeType GetSize() const { return m_NumDimMappings; } ConstIterator begin() const { return m_DimMappings.begin(); } ConstIterator end() const { return m_DimMappings.end(); } bool IsEqual(const PermutationVector& other) const { if (m_NumDimMappings != other.m_NumDimMappings) return false; for (unsigned int i = 0; i < m_NumDimMappings; ++i) { if (m_DimMappings[i] != other.m_DimMappings[i]) return false; } return true; } bool IsInverse(const PermutationVector& other) const { bool isInverse = (GetSize() == other.GetSize()); for (SizeType i = 0; isInverse && (i < GetSize()); ++i) { isInverse = (m_DimMappings[other.m_DimMappings[i]] == i); } return isInverse; } private: ArrayType m_DimMappings; /// Number of valid entries in @ref m_DimMappings SizeType m_NumDimMappings; }; /// Define LayerGuid type. using LayerGuid = unsigned int; class ITensorHandle; /// Define the type of callback for the Debug layer to call /// @param guid - guid of layer connected to the input of the Debug layer /// @param slotIndex - index of the output slot connected to the input of the Debug layer /// @param tensorHandle - TensorHandle for the input tensor to the Debug layer using DebugCallbackFunction = std::function; } // namespace armnn