// // Copyright © 2020 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include "TestUtils.hpp" #include #include #include #include #include #include #include #include namespace { template std::vector CreateConv2dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, uint32_t dilationX, uint32_t dilationY, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, const std::vector & inputTensorShape, const std::vector & filterTensorShape, const std::vector & biasTensorShape, const std::vector & outputTensorShape, const std::vector & filterData, const std::vector & biasData, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 3> buffers; buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})); buffers[1] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(filterData.data()), sizeof(T) * filterData.size())); buffers[2] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(biasData.data()), sizeof(B) * biasData.size())); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); auto outputQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ outputQuantScale }), flatBufferBuilder.CreateVector({ outputQuantOffset })); auto filterQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(filterScales), flatBufferBuilder.CreateVector(filterOffsets), tflite::QuantizationDetails_NONE, 0, filterQuantizationDim); auto biasQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(biasScales), flatBufferBuilder.CreateVector(biasOffsets)); std::array, 4> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(filterTensorShape.data(), filterTensorShape.size()), tensorType, 1, flatBufferBuilder.CreateString("filter"), filterQuantizationParameters); auto biasTensorType = ::tflite::TensorType_FLOAT32; if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8) { biasTensorType = ::tflite::TensorType_INT32; } tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(biasTensorShape.data(), biasTensorShape.size()), biasTensorType, 2, flatBufferBuilder.CreateString("bias"), biasQuantizationParameters); tensors[3] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), outputQuantizationParameters); flatbuffers::Offset operatorBuiltinOptions; tflite::BuiltinOptions operatorBuiltinOptionsType; if(convolutionOperatorCode == tflite::BuiltinOperator_DEPTHWISE_CONV_2D) { operatorBuiltinOptionsType = tflite::BuiltinOptions_DepthwiseConv2DOptions; operatorBuiltinOptions = CreateDepthwiseConv2DOptions(flatBufferBuilder, padding, strideX, strideY, depth_multiplier, fused_activation_function, dilationX, dilationY).Union(); } if(convolutionOperatorCode == tflite::BuiltinOperator_CONV_2D) { operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv2DOptions; operatorBuiltinOptions = CreateConv2DOptions(flatBufferBuilder, padding, strideX, strideY, fused_activation_function, dilationX, dilationY).Union(); } // create operator const std::vector operatorInputs{0, 1, 2}; const std::vector operatorOutputs{3}; flatbuffers::Offset convolutionOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1, 2}; const std::vector subgraphOutputs{3}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&convolutionOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Convolution2d Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, convolutionOperatorCode); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void ConvolutionTest(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, uint32_t dilationX, uint32_t dilationY, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, std::vector& backends, std::vector& inputShape, std::vector& filterShape, std::vector& outputShape, std::vector& inputValues, std::vector& filterValues, std::vector& expectedOutputValues, const std::vector& biasShape = {}, const std::vector& biasValues = {}, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 3) { using namespace tflite; std::vector modelBuffer; modelBuffer = CreateConv2dTfLiteModel(convolutionOperatorCode, tensorType, strideX, strideY, dilationX, dilationY, padding, fused_activation_function, inputShape, filterShape, biasShape, outputShape, filterValues, biasValues, biasScales, biasOffsets, filterScales, filterOffsets, outputQuantScale, outputQuantOffset, quantScale, quantOffset, depth_multiplier, filterQuantizationDim); const Model* tfLiteModel = GetModel(modelBuffer.data()); // Create TfLite Interpreters std::unique_ptr armnnDelegateInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&armnnDelegateInterpreter) == kTfLiteOk); CHECK(armnnDelegateInterpreter != nullptr); CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk); std::unique_ptr tfLiteInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&tfLiteInterpreter) == kTfLiteOk); CHECK(tfLiteInterpreter != nullptr); CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk); // Create the ArmNN Delegate armnnDelegate::DelegateOptions delegateOptions(backends); std::unique_ptr theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), armnnDelegate::TfLiteArmnnDelegateDelete); CHECK(theArmnnDelegate != nullptr); // Modify armnnDelegateInterpreter to use armnnDelegate CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); // Set input data auto tfLiteDelegateInputId = tfLiteInterpreter->inputs()[0]; auto tfLiteDelageInputData = tfLiteInterpreter->typed_tensor(tfLiteDelegateInputId); for (unsigned int i = 0; i < inputValues.size(); ++i) { tfLiteDelageInputData[i] = inputValues[i]; } auto armnnDelegateInputId = armnnDelegateInterpreter->inputs()[0]; auto armnnDelegateInputData = armnnDelegateInterpreter->typed_tensor(armnnDelegateInputId); for (unsigned int i = 0; i < inputValues.size(); ++i) { armnnDelegateInputData[i] = inputValues[i]; } // Run EnqueueWorkload CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk); CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk); // Compare output data auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0]; auto tfLiteDelagateOutputData = tfLiteInterpreter->typed_tensor(tfLiteDelegateOutputId); auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0]; auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor(armnnDelegateOutputId); for (size_t i = 0; i < expectedOutputValues.size(); i++) { CHECK(tfLiteDelagateOutputData[i] == armnnDelegateOutputData[i]); CHECK(doctest::Approx(tfLiteDelagateOutputData[i]).epsilon(0.000001f) == expectedOutputValues[i]); CHECK(doctest::Approx(armnnDelegateOutputData[i]).epsilon(0.000001f) == expectedOutputValues[i]); } } // Conv3d is only correctly supported for external delegates from TF Lite v2.6, as there was a breaking bug in v2.5. #if defined(ARMNN_POST_TFLITE_2_5) template std::vector CreateConv3dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, std::vector strides, std::vector dilation, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, const std::vector& inputTensorShape, const std::vector& filterTensorShape, const std::vector& biasTensorShape, const std::vector& outputTensorShape, const std::vector& filterData, const std::vector& biasData, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 3> buffers; buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})); buffers[1] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(filterData.data()), sizeof(T) * filterData.size())); buffers[2] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(biasData.data()), sizeof(B) * biasData.size())); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); auto outputQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ outputQuantScale }), flatBufferBuilder.CreateVector({ outputQuantOffset })); auto filterQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(filterScales), flatBufferBuilder.CreateVector(filterOffsets), tflite::QuantizationDetails_NONE, 0, filterQuantizationDim); auto biasQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(biasScales), flatBufferBuilder.CreateVector(biasOffsets)); std::array, 4> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(filterTensorShape.data(), filterTensorShape.size()), tensorType, 1, flatBufferBuilder.CreateString("filter"), filterQuantizationParameters); auto biasTensorType = ::tflite::TensorType_FLOAT32; if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8) { biasTensorType = ::tflite::TensorType_INT32; } tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(biasTensorShape.data(), biasTensorShape.size()), biasTensorType, 2, flatBufferBuilder.CreateString("bias"), biasQuantizationParameters); tensors[3] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), outputQuantizationParameters); tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv3DOptions; flatbuffers::Offset operatorBuiltinOptions = CreateConv3DOptions(flatBufferBuilder, padding, strides[2], // Depth strides[0], // Width strides[1], // Height fused_activation_function, dilation[2], dilation[0], dilation[1]).Union(); // Create operator const std::vector operatorInputs{0, 1, 2}; const std::vector operatorOutputs{3}; flatbuffers::Offset convolutionOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1, 2}; const std::vector subgraphOutputs{3}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&convolutionOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Convolution 3d Operator Model"); // If using an operator with a code greater than 127 then the enum value should be passed as the fifth // parameter rather than the second like in other tests. flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, 0, 0, 1, tflite::BuiltinOperator_CONV_3D); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void Convolution3dTest(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, std::vector strides, std::vector dilation, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, std::vector& backends, std::vector& inputShape, std::vector& filterShape, std::vector& outputShape, std::vector& inputValues, std::vector& filterValues, std::vector& expectedOutputValues, const std::vector& biasShape = {}, const std::vector& biasValues = {}, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 3) { using namespace tflite; std::vector modelBuffer; modelBuffer = CreateConv3dTfLiteModel(convolutionOperatorCode, tensorType, strides, dilation, padding, fused_activation_function, inputShape, filterShape, biasShape, outputShape, filterValues, biasValues, biasScales, biasOffsets, filterScales, filterOffsets, outputQuantScale, outputQuantOffset, quantScale, quantOffset, depth_multiplier, filterQuantizationDim); const Model* tfLiteModel = GetModel(modelBuffer.data()); // Create TfLite Interpreters std::unique_ptr armnnDelegateInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&armnnDelegateInterpreter) == kTfLiteOk); CHECK(armnnDelegateInterpreter != nullptr); CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk); std::unique_ptr tfLiteInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&tfLiteInterpreter) == kTfLiteOk); CHECK(tfLiteInterpreter != nullptr); CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk); // Create the ArmNN Delegate armnnDelegate::DelegateOptions delegateOptions(backends); std::unique_ptr theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), armnnDelegate::TfLiteArmnnDelegateDelete); CHECK(theArmnnDelegate != nullptr); // Modify armnnDelegateInterpreter to use armnnDelegate CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); // Set input data armnnDelegate::FillInput(tfLiteInterpreter, 0, inputValues); armnnDelegate::FillInput(armnnDelegateInterpreter, 0, inputValues); // Run EnqueueWorkload CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk); CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk); // Compare output data auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0]; auto tfLiteDelagateOutputData = tfLiteInterpreter->typed_tensor(tfLiteDelegateOutputId); auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0]; auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor(armnnDelegateOutputId); armnnDelegate::CompareData(expectedOutputValues.data(), armnnDelegateOutputData, expectedOutputValues.size(), 1); armnnDelegate::CompareData(expectedOutputValues.data(), tfLiteDelagateOutputData, expectedOutputValues.size(), 1); armnnDelegate::CompareData(tfLiteDelagateOutputData, armnnDelegateOutputData, expectedOutputValues.size(), 1); } #endif template std::vector CreateTransposeConvTfLiteModel(tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, tflite::Padding padding, const std::vector & transposeTensorShape, const std::vector & filterTensorShape, const std::vector & inputTensorShape, const std::vector & outputTensorShape, const std::vector & transposeData, const std::vector & filterData, float filterScale = 1.0f, int filterOffset = 0, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 3> buffers; buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})); buffers[1] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(transposeData.data()), sizeof(int32_t) * transposeData.size())); buffers[2] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(filterData.data()), sizeof(T) * filterData.size())); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); auto outputQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ outputQuantScale }), flatBufferBuilder.CreateVector({ outputQuantOffset })); auto filterQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ filterScale }), flatBufferBuilder.CreateVector({ filterOffset })); std::array, 4> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(transposeTensorShape.data(), transposeTensorShape.size()), tflite::TensorType_INT32, 1); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(filterTensorShape.data(), filterTensorShape.size()), tensorType, 2, flatBufferBuilder.CreateString("filter"), filterQuantizationParameters); tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[3] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), outputQuantizationParameters); tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_TransposeConvOptions; flatbuffers::Offset operatorBuiltinOptions = CreateTransposeConvOptions(flatBufferBuilder, padding, strideX, strideY).Union(); // create operator const std::vector operatorInputs{0, 1, 2}; const std::vector operatorOutputs{3}; flatbuffers::Offset convolutionOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1, 2}; const std::vector subgraphOutputs{3}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&convolutionOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: TransposeConv Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_TRANSPOSE_CONV); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void TransposeConvTest(std::vector& backends, tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, tflite::Padding padding, const std::vector & transposeTensorShape, const std::vector & filterTensorShape, const std::vector & inputTensorShape, const std::vector & outputTensorShape, const std::vector & transposeData, const std::vector & filterData, std::vector& inputValues, std::vector& expectedOutputValues, float filterScale = 1.0f, int filterOffset = 0, float outputQuantScale = 1.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; std::vector modelBuffer; modelBuffer = CreateTransposeConvTfLiteModel(tensorType, strideX, strideY, padding, transposeTensorShape, filterTensorShape, inputTensorShape, outputTensorShape, transposeData, filterData, filterScale, filterOffset, outputQuantScale, outputQuantOffset, quantScale, quantOffset); const Model* tfLiteModel = GetModel(modelBuffer.data()); // Create TfLite Interpreters std::unique_ptr armnnDelegateInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&armnnDelegateInterpreter) == kTfLiteOk); CHECK(armnnDelegateInterpreter != nullptr); CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk); std::unique_ptr tfLiteInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&tfLiteInterpreter) == kTfLiteOk); CHECK(tfLiteInterpreter != nullptr); CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk); // Create the ArmNN Delegate armnnDelegate::DelegateOptions delegateOptions(backends); std::unique_ptr theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), armnnDelegate::TfLiteArmnnDelegateDelete); CHECK(theArmnnDelegate != nullptr); // Modify armnnDelegateInterpreter to use armnnDelegate CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); // Set input data auto tfLiteDelegateInputId = tfLiteInterpreter->inputs()[2]; auto tfLiteDelageInputData = tfLiteInterpreter->typed_tensor(tfLiteDelegateInputId); for (unsigned int i = 0; i < inputValues.size(); ++i) { tfLiteDelageInputData[i] = inputValues[i]; } auto armnnDelegateInputId = armnnDelegateInterpreter->inputs()[2]; auto armnnDelegateInputData = armnnDelegateInterpreter->typed_tensor(armnnDelegateInputId); for (unsigned int i = 0; i < inputValues.size(); ++i) { armnnDelegateInputData[i] = inputValues[i]; } // Run EnqueueWorkload CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk); CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk); // Compare output data auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0]; auto tfLiteDelagateOutputData = tfLiteInterpreter->typed_tensor(tfLiteDelegateOutputId); auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0]; auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor(armnnDelegateOutputId); for (size_t i = 0; i < expectedOutputValues.size(); i++) { CHECK(armnnDelegateOutputData[i] == expectedOutputValues[i]); CHECK(tfLiteDelagateOutputData[i] == expectedOutputValues[i]); CHECK(tfLiteDelagateOutputData[i] == armnnDelegateOutputData[i]); } } } // anonymous namespace