// // Copyright © 2020 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include "TestUtils.hpp" #include #include #include #include #include #include #include #include #include namespace { std::vector CreateConcatTfLiteModel(tflite::BuiltinOperator controlOperatorCode, tflite::TensorType tensorType, std::vector& inputTensorShape, const std::vector & outputTensorShape, const int32_t inputTensorNum, int32_t axis = 0, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::vector> buffers; buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({}))); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); std::vector operatorInputs{}; const std::vector operatorOutputs{inputTensorNum}; std::vector subgraphInputs{}; const std::vector subgraphOutputs{inputTensorNum}; std::vector> tensors(inputTensorNum + 1); for (int i = 0; i < inputTensorNum; ++i) { tensors[i] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input" + std::to_string(i)), quantizationParameters); // Add number of inputs to vector. operatorInputs.push_back(i); subgraphInputs.push_back(i); } // Create output tensor tensors[inputTensorNum] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), quantizationParameters); // create operator tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_ConcatenationOptions; flatbuffers::Offset operatorBuiltinOptions = CreateConcatenationOptions(flatBufferBuilder, axis).Union(); flatbuffers::Offset controlOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&controlOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Concatenation Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, controlOperatorCode); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } std::vector CreateMeanTfLiteModel(tflite::BuiltinOperator controlOperatorCode, tflite::TensorType tensorType, std::vector& input0TensorShape, std::vector& input1TensorShape, const std::vector & outputTensorShape, std::vector& axisData, const bool keepDims, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 2> buffers; buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})); buffers[1] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(axisData.data()), sizeof(int32_t) * axisData.size())); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); std::array, 3> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(input0TensorShape.data(), input0TensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(input1TensorShape.data(), input1TensorShape.size()), ::tflite::TensorType_INT32, 1, flatBufferBuilder.CreateString("axis"), quantizationParameters); // Create output tensor tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), quantizationParameters); // create operator. Mean uses ReducerOptions. tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_ReducerOptions; flatbuffers::Offset operatorBuiltinOptions = CreateReducerOptions(flatBufferBuilder, keepDims).Union(); const std::vector operatorInputs{ {0, 1} }; const std::vector operatorOutputs{ 2 }; flatbuffers::Offset controlOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{ {0, 1} }; const std::vector subgraphOutputs{ 2 }; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&controlOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Mean Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, controlOperatorCode); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void ConcatenationTest(tflite::BuiltinOperator controlOperatorCode, tflite::TensorType tensorType, std::vector& backends, std::vector& inputShapes, std::vector& expectedOutputShape, std::vector>& inputValues, std::vector& expectedOutputValues, int32_t axis = 0, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; std::vector modelBuffer = CreateConcatTfLiteModel(controlOperatorCode, tensorType, inputShapes, expectedOutputShape, inputValues.size(), axis, quantScale, quantOffset); const Model* tfLiteModel = GetModel(modelBuffer.data()); // Create TfLite Interpreters std::unique_ptr armnnDelegateInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&armnnDelegateInterpreter) == kTfLiteOk); CHECK(armnnDelegateInterpreter != nullptr); CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk); std::unique_ptr tfLiteInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&tfLiteInterpreter) == kTfLiteOk); CHECK(tfLiteInterpreter != nullptr); CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk); // Create the ArmNN Delegate armnnDelegate::DelegateOptions delegateOptions(backends); std::unique_ptr theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), armnnDelegate::TfLiteArmnnDelegateDelete); CHECK(theArmnnDelegate != nullptr); // Modify armnnDelegateInterpreter to use armnnDelegate CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); // Set input data for all input tensors. for (unsigned int i = 0; i < inputValues.size(); ++i) { // Get single input tensor and assign to interpreters. auto inputTensorValues = inputValues[i]; armnnDelegate::FillInput(tfLiteInterpreter, i, inputTensorValues); armnnDelegate::FillInput(armnnDelegateInterpreter, i, inputTensorValues); } // Run EnqueWorkload CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk); CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk); // Compare output data armnnDelegate::CompareOutputData(tfLiteInterpreter, armnnDelegateInterpreter, expectedOutputShape, expectedOutputValues); armnnDelegateInterpreter.reset(nullptr); } template void MeanTest(tflite::BuiltinOperator controlOperatorCode, tflite::TensorType tensorType, std::vector& backends, std::vector& input0Shape, std::vector& input1Shape, std::vector& expectedOutputShape, std::vector& input0Values, std::vector& input1Values, std::vector& expectedOutputValues, const bool keepDims, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; std::vector modelBuffer = CreateMeanTfLiteModel(controlOperatorCode, tensorType, input0Shape, input1Shape, expectedOutputShape, input1Values, keepDims, quantScale, quantOffset); const Model* tfLiteModel = GetModel(modelBuffer.data()); // Create TfLite Interpreters std::unique_ptr armnnDelegateInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&armnnDelegateInterpreter) == kTfLiteOk); CHECK(armnnDelegateInterpreter != nullptr); CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk); std::unique_ptr tfLiteInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&tfLiteInterpreter) == kTfLiteOk); CHECK(tfLiteInterpreter != nullptr); CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk); // Create the ArmNN Delegate armnnDelegate::DelegateOptions delegateOptions(backends); std::unique_ptr theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), armnnDelegate::TfLiteArmnnDelegateDelete); CHECK(theArmnnDelegate != nullptr); // Modify armnnDelegateInterpreter to use armnnDelegate CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); // Set input data armnnDelegate::FillInput(tfLiteInterpreter, 0, input0Values); armnnDelegate::FillInput(armnnDelegateInterpreter, 0, input0Values); // Run EnqueWorkload CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk); CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk); // Compare output data armnnDelegate::CompareOutputData(tfLiteInterpreter, armnnDelegateInterpreter, expectedOutputShape, expectedOutputValues); armnnDelegateInterpreter.reset(nullptr); } } // anonymous namespace