// // Copyright © 2020 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include "DelegateUtils.hpp" #include #include #include #include #include #include #include namespace armnnDelegate { TfLiteStatus VisitLstmOperator(DelegateData& delegateData, TfLiteContext* tfLiteContext, TfLiteNode* tfLiteNode, int nodeIndex, int32_t operatorCode) { auto numInputs = tfLiteNode->inputs->size; if (numInputs < 2) { TF_LITE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnDelegate: Minimum number of inputs (%d != %d) in node #%d", 2, numInputs, nodeIndex); return kTfLiteError; } const auto nodeParams = reinterpret_cast(tfLiteNode->builtin_data); const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors; const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]]; if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]]; if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } // Set the params structure for the AddLstmLayer call armnn::LstmInputParams params; if (IsOptionalOperandPresent(tfLiteNode, 1)) { params.m_InputToInputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 1); } params.m_InputToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 2); params.m_InputToCellWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 3); params.m_InputToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 4); // Recurrent weight tensors of size {n_cell, n_output} if (IsOptionalOperandPresent(tfLiteNode, 5)) { params.m_RecurrentToInputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 5); } params.m_RecurrentToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 6); params.m_RecurrentToCellWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 7); params.m_RecurrentToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 8); // Peephole weights tensors of size {n_cell}, representing a diagonal matrix. if (IsOptionalOperandPresent(tfLiteNode, 9)) { params.m_CellToInputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 9); } if (IsOptionalOperandPresent(tfLiteNode, 10)) { params.m_CellToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 10); } if (IsOptionalOperandPresent(tfLiteNode, 11)) { params.m_CellToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 11); } // Gates bias tensors of size {n_cell} if (IsOptionalOperandPresent(tfLiteNode, 12)) { params.m_InputGateBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 12); } params.m_ForgetGateBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 13); params.m_CellBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 14); params.m_OutputGateBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 15); // Projection weight tensor of size {n_output, n_cell} if (IsOptionalOperandPresent(tfLiteNode, 16)) { params.m_ProjectionWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 16); } // Projection bias tensor of size {n_output} if (IsOptionalOperandPresent(tfLiteNode, 17)) { params.m_ProjectionBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 17); } // These state tensors are defined as variable tensors, and will be modified by this op. armnn::TensorInfo outputStateInInfo = GetTensorInfoForTfLiteTensor(tfLiteTensors[tfLiteNode->inputs->data[18]]); armnn::TensorInfo cellStateInInfo = GetTensorInfoForTfLiteTensor(tfLiteTensors[tfLiteNode->inputs->data[19]]); // Layer norm coefficient tensors of size {n_cell}, representing a diagonal matrix. if (IsOptionalOperandPresent(tfLiteNode, 20)) { params.m_InputLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 20); } if (IsOptionalOperandPresent(tfLiteNode, 21)) { params.m_ForgetLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 21); } if (IsOptionalOperandPresent(tfLiteNode, 22)) { params.m_CellLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 22); } if (IsOptionalOperandPresent(tfLiteNode, 23)) { params.m_OutputLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 23); } // set the layer descriptor armnn::LstmDescriptor desc; desc.m_ActivationFunc = NonNegative(nodeParams->activation, nodeIndex); desc.m_ClippingThresCell = nodeParams->cell_clip; desc.m_ClippingThresProj = nodeParams->proj_clip; desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr || params.m_RecurrentToInputWeights == nullptr || params.m_InputGateBias == nullptr); desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr || params.m_CellToOutputWeights != nullptr); desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr); desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr || params.m_ForgetLayerNormWeights != nullptr || params.m_CellLayerNormWeights != nullptr || params.m_OutputLayerNormWeights != nullptr); const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor); const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor); unsigned int batchSize = inputTensorInfo.GetShape()[0]; unsigned int outputSize = outputTensorInfo.GetShape()[1]; unsigned int numUnits = cellStateInInfo.GetShape()[1]; armnn::DataType dataType = inputTensorInfo.GetDataType(); float qScale = inputTensorInfo.GetQuantizationScale(); float qOffset = inputTensorInfo.GetQuantizationOffset(); armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, dataType, qScale, qOffset); if (!desc.m_CifgEnabled) { scratchBufferTensorInfo = armnn::TensorInfo({batchSize, numUnits * 4}, dataType, qScale, qOffset); } armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, dataType, qScale, qOffset); armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, dataType, qScale, qOffset); armnn::LstmInputParamsInfo paramsInfo; paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo()); paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo()); paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo()); paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo()); paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo()); paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo()); paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo()); paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo()); paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo()); if (!desc.m_CifgEnabled) { paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo()); paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo()); if (params.m_CellToInputWeights != nullptr) { paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo()); } paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo()); } if (desc.m_ProjectionEnabled) { paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo()); if (params.m_ProjectionBias != nullptr) { paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo()); } } if (desc.m_PeepholeEnabled) { paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo()); paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo()); } if (desc.m_LayerNormEnabled) { if(!desc.m_CifgEnabled) { paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo()); } paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo()); paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo()); paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo()); } bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) { FORWARD_LAYER_SUPPORT_FUNC("LSTM", tfLiteContext, IsLstmSupported, delegateData.m_Backends, isSupported, inputTensorInfo, outputStateInInfo, cellStateInInfo, scratchBufferTensorInfo, outputStateOutTensorInfo, cellStateOutTensorInfo, outputInfo, desc, paramsInfo); }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } armnn::IConnectableLayer* layer = delegateData.m_Network->AddLstmLayer(desc, params); ARMNN_ASSERT(layer != nullptr); layer->GetOutputSlot(0).SetTensorInfo(scratchBufferTensorInfo); layer->GetOutputSlot(1).SetTensorInfo(outputStateOutTensorInfo); layer->GetOutputSlot(2).SetTensorInfo(cellStateOutTensorInfo); layer->GetOutputSlot(3).SetTensorInfo(outputTensorInfo); // Connect the inputs // input_layer delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[0]]->Connect(layer->GetInputSlot(0)); // cellStateIn delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[18]]->Connect(layer->GetInputSlot(1)); //outputStateIn delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[19]]->Connect(layer->GetInputSlot(2)); // In the test_model there is only 1 Output armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(1); delegateData.m_OutputSlotForNode[static_cast(tfLiteNode->outputs->data[0])] = &outputSlot; return kTfLiteOk; } } // namespace armnnDelegate