// // Copyright © 2023 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include namespace armnnOpaqueDelegate { TfLiteStatus VisitStridedSliceOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t tfLiteStridedSliceOperatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 4, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); // Read inputs [input, begin, end, strides] // Gather input indices and use to get input tensor. const int* inputTensors; int numInputs; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } std::vector tfLiteInputTensors; tfLiteInputTensors.reserve(numInputs); for (int i = 0; i < numInputs; i++) { const TfLiteOpaqueTensor* inputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[i]); tfLiteInputTensors.push_back(inputTensor); if (!IsValid(tfLiteContext, inputTensor, tfLiteStridedSliceOperatorCode, nodeIndex)) { return kTfLiteError; } } const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensors[0]); // We save the begin, end and strides tensors in our descriptor. Therefore we have to read those values from inputs unsigned int inputRank = inputTensorInfo.GetNumDimensions(); auto ReadInt32Input = [&](int inputIndex, std::vector& outputData) -> TfLiteStatus { if (TfLiteOpaqueTensorType(tfLiteInputTensors[inputIndex]) != kTfLiteInt32) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLitearmnnOpaqueDelegate: The Begin-, End- and Stride-Tensors of the StridedSlice operation need" " to be of type int32. Operator: #%d node #%d: ", tfLiteStridedSliceOperatorCode, nodeIndex); return kTfLiteError; } uint32_t rank = TfLiteOpaqueTensorNumDims(tfLiteInputTensors[inputIndex]); if (rank != 1) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLitearmnnOpaqueDelegate: The Begin-, End- and Stride-Tensors of the StridedSlice operation need" " to be a 1D-Tensor. Operator: #%d node #%d: ", tfLiteStridedSliceOperatorCode, nodeIndex); return kTfLiteError; } uint32_t numValues = TfLiteOpaqueTensorDim(tfLiteInputTensors[inputIndex], 0); if (numValues != inputRank) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLitearmnnOpaqueDelegate: The number of values in the Begin-, End- and Stride-Tensors of the " "StridedSlice operation need to be equal to the rank of the Input-Tensor. Operator: #%d node #%d: ", tfLiteStridedSliceOperatorCode, nodeIndex); return kTfLiteError; } // return tensor data auto* tensorDataPtr = static_cast(TfLiteOpaqueTensorData(tfLiteInputTensors[inputIndex])); outputData.assign(tensorDataPtr, tensorDataPtr + numValues); return kTfLiteOk; }; std::vector beginData; if (ReadInt32Input(1, beginData) != kTfLiteOk) return kTfLiteError; std::vector endData; if (ReadInt32Input(2, endData) != kTfLiteOk) return kTfLiteError; std::vector strideData; if (ReadInt32Input(3, strideData) != kTfLiteOk) return kTfLiteError; // parse built in options auto* nodeParameters = reinterpret_cast(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode)); // Write all data to the descriptor armnn::StridedSliceDescriptor descriptor; descriptor.m_Begin = std::move(beginData); descriptor.m_End = std::move(endData); descriptor.m_Stride = std::move(strideData); descriptor.m_BeginMask = nodeParameters->begin_mask; descriptor.m_EllipsisMask = nodeParameters->ellipsis_mask; descriptor.m_EndMask = nodeParameters->end_mask; descriptor.m_NewAxisMask = nodeParameters->new_axis_mask; descriptor.m_ShrinkAxisMask = nodeParameters->shrink_axis_mask; descriptor.m_DataLayout = armnn::DataLayout::NHWC; // Validate output // Gather output indices and use to get output tensor. const int* outputTensors; int numOutputs; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]); if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteStridedSliceOperatorCode, nodeIndex)) { return kTfLiteError; } const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor); bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("STRIDED_SLICE", tfLiteContext, IsStridedSliceSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo, outInfo, descriptor); }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } // Add a StridedSlice layer armnn::IConnectableLayer* layer = delegateData.m_Network->AddStridedSliceLayer(descriptor); layer->SetBackendId(setBackend); ARMNN_ASSERT(layer != nullptr); armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); // try to connect the Constant Inputs if there are any if(ProcessInputs(layer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk ) { return kTfLiteError; } // Connect return Connect(layer, tfLiteContext, tfLiteNode, delegateData); } } // namespace armnnOpaqueDelegate