// // Copyright © 2023 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include namespace armnnOpaqueDelegate { TfLiteStatus VisitCastOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t operatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); int numInputs = 0; const int* inputTensors; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { return kTfLiteError; } // This layer only has 1 input, so we can directly assign tensor[0] to a new opaque tensor const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[numInputs-1]); if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } int numOutputs = 0; const int* outputTensors; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { return kTfLiteError; } // This layer only has 1 output, so we can directly assign tensor[0] to a new opaque tensor const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[numOutputs-1]); if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor); const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true); bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("CAST", tfLiteContext, IsCastSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo, outInfo); }; // If the m_Network is a nullptr, this signals that a prerequisite TfLite callback is required to clarify the // support for the operator // If supported, VisitCastOperator will be called again to add the layer to the network as seen further below if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } // Add a Cast layer auto layerName = GetName(armnn::LayerType::Cast, nodeIndex); armnn::IConnectableLayer* layer = delegateData.m_Network->AddCastLayer(layerName.c_str()); layer->SetBackendId(setBackend); ARMNN_ASSERT(layer != nullptr); armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); // try to connect the Constant Inputs if there are any if (ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk) { return kTfLiteError; } // Connect return Connect(layer, tfLiteContext, tfLiteNode, delegateData); } TfLiteStatus VisitReshapeOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t operatorCode) { auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode); if (numInputs == 2) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex)); } else { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); } TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); // Gather input indices and use to get input tensor. const int* inputTensors; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]); if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } // Gather output indices and use to get output tensors. int numOutputs = 0; const int* outputTensors; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]); if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } const armnn::TensorInfo& inputTensorInfo0 = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor); const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true); armnn::ReshapeDescriptor reshapeDesc; std::vector targetShape; auto* reshapeOptions = reinterpret_cast(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode)); // The new shape can be defined by either a second input tensor or by a builtin option, we need to check for both. // Options might be set without valid data. we need to check the dimensions are in a valid range. if (reshapeOptions && reshapeOptions->num_dimensions > 0 && reshapeOptions->num_dimensions <= 8) { for (int i = 0; i < reshapeOptions->num_dimensions; ++i) { targetShape.push_back(reshapeOptions->shape[i]); } } else if (numInputs == 2) { // Get shape from the second input tensor const TfLiteOpaqueTensor* tfLiteShapeInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]); if (!IsValid(tfLiteContext, tfLiteShapeInputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } int32_t numDims = TfLiteOpaqueTensorNumDims(tfLiteShapeInputTensor); if (numDims != 1) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Target 'shape' input is not a 1D tensor in " "operator #%d node #%d: Falling back to TfLiteOptions.", operatorCode, nodeIndex); } else { // Get the shape data out of the input tensor auto* shapeTensorDataPtr = static_cast(TfLiteOpaqueTensorData(tfLiteShapeInputTensor)); int32_t shapeTensorNumValues = TfLiteOpaqueTensorDim(tfLiteShapeInputTensor, 0); for (int32_t i = 0; i < shapeTensorNumValues; ++i) { targetShape.push_back(shapeTensorDataPtr[i]); } } } else { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Target shape not defined in reshape parameters or input tensor. " "At least one method required in operator #%d node #%d: ", operatorCode, nodeIndex); return kTfLiteError; } // Use the data to create the required tensor shape. if (CreateOutputTensorShape(inputTensorInfo0, targetShape, reshapeDesc) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: At most one component of shape can be -1 in: " "operator #%d node #%d: ", operatorCode, nodeIndex); return kTfLiteError; } if (reshapeDesc.m_TargetShape.GetNumElements() != inputTensorInfo0.GetNumElements()) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Reshape, number of elements in output shape does not match input " "operator #%d node #%d: ", operatorCode, nodeIndex); return kTfLiteError; } bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("RESHAPE", tfLiteContext, IsReshapeSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo0, outInfo, reshapeDesc); }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } auto layerName = GetName(armnn::LayerType::Reshape, nodeIndex); armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc, layerName.c_str()); layer->SetBackendId(setBackend); ARMNN_ASSERT(layer != nullptr); armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); // try to connect the Constant Inputs if there are any if (ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk) { return kTfLiteError; } // Connect return Connect(layer, tfLiteContext, tfLiteNode, delegateData); } TfLiteStatus VisitSqueezeOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t operatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); // Gather input indices and use to get input tensor. int numInputs = 0; const int* inputTensors; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]); if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } // Gather output indices and use to get output tensors. int numOutputs = 0; const int* outputTensors; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]); if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } auto* options = reinterpret_cast(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode)); const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor); std::vector squeezeDim; // A single negative dim index is interpreted as a negative index in python // Meaning the index will be the shape size plus the negative index value if (options->num_squeeze_dims == 1 && options->squeeze_dims[0] < 0) { int32_t dim = static_cast(inputTensorInfo.GetShape().GetNumDimensions()) + options->squeeze_dims[0]; squeezeDim.push_back(static_cast(dim)); } else { for (int32_t i = 0; i < options->num_squeeze_dims; ++i) { squeezeDim.push_back(static_cast(options->squeeze_dims[i])); } } armnn::TensorInfo outputTensorInfo = OutputShapeOfSqueeze(squeezeDim, inputTensorInfo); armnn::ReshapeDescriptor reshapeDesc; reshapeDesc.m_TargetShape = outputTensorInfo.GetShape(); bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SQUEEZE", tfLiteContext, IsReshapeSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo, outInfo, reshapeDesc); }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } auto layerName = GetName(armnn::LayerType::Reshape, nodeIndex, "Squeeze"); armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc, layerName.c_str()); layer->SetBackendId(setBackend); ARMNN_ASSERT(layer != nullptr); armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); // try to connect the Constant Inputs if there are any if (ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk) { return kTfLiteError; } // Connect return Connect(layer, tfLiteContext, tfLiteNode, delegateData); } TfLiteStatus VisitExpandDimsOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t operatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); // Gather input indices and use to get input tensor. int numInputs = 0; const int* inputTensors; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]); if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteAxisTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]); if (!IsValid(tfLiteContext, tfLiteAxisTensor, operatorCode, nodeIndex)) { return kTfLiteError; } // Gather output indices and use to get output tensors. int numOutputs = 0; const int* outputTensors; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]); if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex)) { return kTfLiteError; } const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor); armnn::TensorInfo outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor); auto* axisTensorData = static_cast(TfLiteOpaqueTensorData(tfLiteAxisTensor)); int32_t axis = axisTensorData[0]; int32_t inputDimSize = static_cast(inputTensorInfo.GetShape().GetNumDimensions()); if (axis > inputDimSize || axis < 0 - (inputDimSize + 1)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Axis must be in range " "[0 - (inputDimSize + 1), inputDimSize] inclusive."); return kTfLiteError; } if(axis < 0) { axis = inputDimSize + axis + 1; } std::vector shape(static_cast(inputDimSize) + 1); unsigned int inputShapeIndex = 0; for (unsigned int i = 0; i < static_cast(inputDimSize + 1); ++i) { if (i == static_cast(axis)) { shape[i] = 1; } else { shape[i] = inputTensorInfo.GetShape()[inputShapeIndex]; ++inputShapeIndex; } } armnn::ReshapeDescriptor reshapeDesc; reshapeDesc.m_TargetShape = armnn::TensorShape(static_cast(inputDimSize + 1), shape.data()); bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("EXPAND_DIMS", tfLiteContext, IsReshapeSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo, outInfo, reshapeDesc); }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } auto layerName = GetName(armnn::LayerType::Reshape, nodeIndex, "ExpandDims"); armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc, layerName.c_str()); layer->SetBackendId(setBackend); ARMNN_ASSERT(layer != nullptr); armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); outputTensorInfo.SetShape(reshapeDesc.m_TargetShape); outputSlot.SetTensorInfo(outputTensorInfo); // try to connect the Constant Inputs if there are any if (ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk) { return kTfLiteError; } // Connect return Connect(layer, tfLiteContext, tfLiteNode, delegateData); } }