aboutsummaryrefslogtreecommitdiff
path: root/ArmnnPreparedModel_1_2.cpp
blob: 84ff6e243ae3bc77a636081645996efff639b34f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
// Note: the ArmnnBurstExecutorWithCache in this file is based on Android code
//       under the Apache 2.0 license. See comment below for details.
//

#define LOG_TAG "ArmnnDriver"

#include "ArmnnPreparedModel_1_2.hpp"
#include "Utils.hpp"

#include <boost/format.hpp>
#include <log/log.h>
#include <OperationsUtils.h>
#include <ExecutionBurstServer.h>
#include <ValidateHal.h>

#include <cassert>
#include <cinttypes>

using namespace android;
using namespace android::hardware;

namespace {

static const Timing g_NoTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
using namespace armnn_driver;
using TimePoint = std::chrono::steady_clock::time_point;

TimePoint Now()
{
    return std::chrono::steady_clock::now();
}

unsigned long MicrosecondsDuration(TimePoint endPoint, TimePoint startPoint)
{
    return static_cast<unsigned long>(std::chrono::duration_cast<std::chrono::microseconds>(
                                      endPoint - startPoint).count());
}

void NotifyCallbackAndCheck(const ::android::sp<V1_0::IExecutionCallback>& callback,
                            ErrorStatus errorStatus,
                            std::vector<OutputShape>,
                            const Timing,
                            std::string callingFunction)
{
    Return<void> returned = callback->notify(errorStatus);
    // This check is required, if the callback fails and it isn't checked it will bring down the service
    if (!returned.isOk())
    {
        ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s",
              callingFunction.c_str(), returned.description().c_str());
    }
}

void NotifyCallbackAndCheck(const ::android::sp<V1_2::IExecutionCallback>& callback,
                            ErrorStatus errorStatus,
                            std::vector<OutputShape> outputShapes,
                            const Timing timing,
                            std::string callingFunction)
{
    Return<void> returned = callback->notify_1_2(errorStatus, outputShapes, timing);
    // This check is required, if the callback fails and it isn't checked it will bring down the service
    if (!returned.isOk())
    {
        ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s",
              callingFunction.c_str(), returned.description().c_str());
    }
}

bool ValidateRequestArgument(const RequestArgument& requestArg, const armnn::TensorInfo& tensorInfo)
{
    if (requestArg.dimensions.size() != 0)
    {
        if (requestArg.dimensions.size() != tensorInfo.GetNumDimensions())
        {
            ALOGE("Mismatched dimensions (request argument: %zu, expected: %u)",
                  requestArg.dimensions.size(), tensorInfo.GetNumDimensions());
            return false;
        }

        for (unsigned int d = 0; d < tensorInfo.GetNumDimensions(); ++d)
        {
            if (requestArg.dimensions[d] != tensorInfo.GetShape()[d])
            {
                ALOGE("Mismatched size for dimension %d (request argument: %u, expected %u)",
                      d, requestArg.dimensions[d], tensorInfo.GetShape()[d]);
                return false;
            }
        }
    }

    return true;
}

armnn::Tensor GetTensorForRequestArgument(const RequestArgument& requestArg,
                                          const armnn::TensorInfo& tensorInfo,
                                          const std::vector<::android::nn::RunTimePoolInfo>& requestPools)
{
    if (!ValidateRequestArgument(requestArg, tensorInfo))
    {
        return armnn::Tensor();
    }

    return armnn::Tensor(tensorInfo, GetMemoryFromPool(requestArg.location, requestPools));
}

inline std::string BuildTensorName(const char* tensorNamePrefix, std::size_t index)
{
    return tensorNamePrefix + std::to_string(index);
}

} // anonymous namespace

using namespace android::hardware;

namespace armnn_driver
{

template<typename HalVersion>
RequestThread<ArmnnPreparedModel_1_2, HalVersion, ArmnnCallback_1_2>
        ArmnnPreparedModel_1_2<HalVersion>::m_RequestThread;

template<typename HalVersion>
template<typename TensorBindingCollection>
void ArmnnPreparedModel_1_2<HalVersion>::DumpTensorsIfRequired(char const* tensorNamePrefix,
                                                               const TensorBindingCollection& tensorBindings)
{
    if (!m_RequestInputsAndOutputsDumpDir.empty())
    {
        const std::string requestName = boost::str(boost::format("%1%_%2%.dump") % m_NetworkId % m_RequestCount);
        for (std::size_t i = 0u; i < tensorBindings.size(); ++i)
        {
            DumpTensor(m_RequestInputsAndOutputsDumpDir,
                       requestName,
                       BuildTensorName(tensorNamePrefix, i),
                       tensorBindings[i].second);
        }
    }
}

template<typename HalVersion>
ArmnnPreparedModel_1_2<HalVersion>::ArmnnPreparedModel_1_2(armnn::NetworkId networkId,
                                                           armnn::IRuntime* runtime,
                                                           const V1_2::Model& model,
                                                           const std::string& requestInputsAndOutputsDumpDir,
                                                           const bool gpuProfilingEnabled)
    : m_NetworkId(networkId)
    , m_Runtime(runtime)
    , m_Model(model)
    , m_RequestCount(0)
    , m_RequestInputsAndOutputsDumpDir(requestInputsAndOutputsDumpDir)
    , m_GpuProfilingEnabled(gpuProfilingEnabled)
{
    // Enable profiling if required.
    m_Runtime->GetProfiler(m_NetworkId)->EnableProfiling(m_GpuProfilingEnabled);
}

template<typename HalVersion>
ArmnnPreparedModel_1_2<HalVersion>::~ArmnnPreparedModel_1_2()
{
    // Get a hold of the profiler used by this model.
    std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkId);

    // Unload the network associated with this model.
    m_Runtime->UnloadNetwork(m_NetworkId);

    // Dump the profiling info to a file if required.
    DumpJsonProfilingIfRequired(m_GpuProfilingEnabled, m_RequestInputsAndOutputsDumpDir, m_NetworkId, profiler.get());
}

template<typename HalVersion>
Return <ErrorStatus> ArmnnPreparedModel_1_2<HalVersion>::execute(const Request& request,
        const ::android::sp<V1_0::IExecutionCallback>& callback)
{
    if (callback.get() == nullptr)
    {
        ALOGE("ArmnnPreparedModel_1_2::execute invalid callback passed");
        return ErrorStatus::INVALID_ARGUMENT;
    }

    auto cb = [callback](ErrorStatus errorStatus,
                         std::vector<OutputShape> outputShapes,
                         const Timing& timing,
                         std::string callingFunction)
    {
        NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction);
    };

    return Execute(request, MeasureTiming::NO, cb);
}

template<typename HalVersion>
Return <ErrorStatus> ArmnnPreparedModel_1_2<HalVersion>::execute_1_2(const Request& request,
                                                                     MeasureTiming measureTiming,
                                                                     const sp<V1_2::IExecutionCallback>& callback)
{
    if (callback.get() == nullptr)
    {
        ALOGE("ArmnnPreparedModel_1_2::execute_1_2 invalid callback passed");
        return ErrorStatus::INVALID_ARGUMENT;
    }

    auto cb = [callback](ErrorStatus errorStatus,
                         std::vector<OutputShape> outputShapes,
                         const Timing& timing,
                         std::string callingFunction)
    {
        NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction);
    };

    return Execute(request, measureTiming, cb);
}

template<typename HalVersion>
Return<void> ArmnnPreparedModel_1_2<HalVersion>::executeSynchronously(const Request& request,
                                                                      MeasureTiming measureTiming,
                                                                      executeSynchronously_cb cb)
{
    ALOGV("ArmnnPreparedModel_1_2::executeSynchronously(): %s", GetModelSummary(m_Model).c_str());
    m_RequestCount++;

    if (cb == nullptr)
    {
        ALOGE("ArmnnPreparedModel_1_2::executeSynchronously invalid callback passed");
        return Void();
    }

    TimePoint driverStart, driverEnd, deviceStart, deviceEnd;

    if (measureTiming == MeasureTiming::YES)
    {
        driverStart = Now();
    }

    if (!android::nn::validateRequest(request, m_Model))
    {
        ALOGE("ArmnnPreparedModel_1_2::executeSynchronously invalid request model");
        cb(ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming);
        return Void();
    }

    // allocate the tensors on the heap, as they are passed to the request thread
    auto pInputTensors = std::make_shared<armnn::InputTensors>();
    auto pOutputTensors = std::make_shared<armnn::OutputTensors>();

    // map the memory pool into shared pointers
    // use a shared memory pools vector on the heap, as it is passed to the request thread
    auto pMemPools = std::make_shared<std::vector<android::nn::RunTimePoolInfo>>();

    if (!setRunTimePoolInfosFromHidlMemories(pMemPools.get(), request.pools))
    {
        cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
        return Void();
    }
    std::vector<OutputShape> outputShapes(request.outputs.size());

    try
    {
        pInputTensors->reserve(request.inputs.size());
        for (unsigned int i = 0; i < request.inputs.size(); i++)
        {
            const auto& inputArg = request.inputs[i];

            const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
            const armnn::Tensor inputTensor = GetTensorForRequestArgument(inputArg, inputTensorInfo, *pMemPools);

            if (inputTensor.GetMemoryArea() == nullptr)
            {
                ALOGE("Cannot execute request. Error converting request input %u to tensor", i);
                cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
                return Void();
            }

            pInputTensors->emplace_back(i, inputTensor);
        }
        pOutputTensors->reserve(request.outputs.size());

        for (unsigned int i = 0; i < request.outputs.size(); i++)
        {
            const auto& outputArg = request.outputs[i];

            const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
            const armnn::Tensor outputTensor = GetTensorForRequestArgument(outputArg, outputTensorInfo, *pMemPools);

            if (outputTensor.GetMemoryArea() == nullptr)
            {
                ALOGE("Cannot execute request. Error converting request output %u to tensor", i);
                cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
                return Void();
            }
            const size_t outputSize = outputTensorInfo.GetNumBytes();
            const size_t bufferSize = pMemPools->at(outputArg.location.poolIndex).getHidlMemory().size();

            hidl_vec<uint32_t> dimensions;

            armnn::TensorShape tensorShape = outputTensorInfo.GetShape();
            const unsigned int numDims = tensorShape.GetNumDimensions();
            dimensions.resize(numDims);

            for (unsigned int outputIdx = 0u; outputIdx < numDims; ++outputIdx)
            {
                dimensions[outputIdx] = tensorShape[outputIdx];
            }
            outputShapes[i].dimensions = dimensions;
            outputShapes[i].isSufficient = bufferSize >= outputSize;

            if (bufferSize < outputSize)
            {
                ALOGW("ArmnnPreparedModel_1_2::Execute failed");
                cb(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, outputShapes, g_NoTiming);
                return Void();
            }

            pOutputTensors->emplace_back(i, outputTensor);
        }
    }
    catch (armnn::Exception& e)
    {
        ALOGW("armnn::Exception caught while preparing for EnqueueWorkload: %s", e.what());
        cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
        return Void();
    }
    catch (std::exception& e)
    {
        ALOGE("std::exception caught while preparing for EnqueueWorkload: %s", e.what());
        cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
        return Void();
    }

    ALOGV("ArmnnPreparedModel_1_2::executeSynchronously() before Execution");

    DumpTensorsIfRequired("Input", *pInputTensors);
    // run it
    try
    {
        if (measureTiming == MeasureTiming::YES)
        {
            deviceStart = Now();
        }

        armnn::Status status = m_Runtime->EnqueueWorkload(m_NetworkId, *pInputTensors, *pOutputTensors);

        if (measureTiming == MeasureTiming::YES)
        {
            deviceEnd = Now();
        }

        if (status != armnn::Status::Success)
        {
            ALOGW("EnqueueWorkload failed");
            cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
            return Void();
        }
    }
    catch (armnn::Exception& e)
    {
        ALOGW("armnn::Exception caught from EnqueueWorkload: %s", e.what());
        cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
        return Void();
    }
    catch (std::exception& e)
    {
        ALOGE("std::exception caught from EnqueueWorkload: %s", e.what());
        cb(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming);
        return Void();
    }

    DumpTensorsIfRequired("Output", *pOutputTensors);

    // Commit output buffers.
    // Note that we update *all* pools, even if they aren't actually used as outputs -
    // this is simpler and is what the CpuExecutor does.
    for (android::nn::RunTimePoolInfo& pool : *pMemPools)
    {
        pool.update();
    }
    ALOGV("ArmnnPreparedModel_1_2::executeSynchronously() after Execution");

    if (measureTiming == MeasureTiming::YES)
    {
        driverEnd = Now();
        Timing timing;
        timing.timeOnDevice = MicrosecondsDuration(deviceEnd, deviceStart);
        timing.timeInDriver = MicrosecondsDuration(driverEnd, driverStart);
        ALOGV("ArmnnPreparedModel_1_2::executeSynchronously timing Device = %lu Driver = %lu", timing.timeOnDevice,
                timing.timeInDriver);
        cb(ErrorStatus::NONE, outputShapes, timing);
    }
    else
    {
        cb(ErrorStatus::NONE, outputShapes, g_NoTiming);
    }
    return Void();
}

/// This class is strongly inspired by the default implementation in Android named DefaultBurstExecutorWithCache.
/// The original code is licensed under Apache-2.0 and can be found at the following link:
/// https://android.googlesource.com/platform/frameworks/
///         ml/+/refs/tags/android-10.0.0_r20/nn/common/ExecutionBurstServer.cpp
class ArmnnBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
public:
    ArmnnBurstExecutorWithCache(IPreparedModel* preparedModel)
        : m_PreparedModel(preparedModel)
    {}

    bool isCacheEntryPresent(int32_t slot) const override
    {
        const auto it = m_MemoryCache.find(slot);
        return (it != m_MemoryCache.end()) && it->second.valid();
    }

    void addCacheEntry(const hidl_memory& memory, int32_t slot) override
    {
        m_MemoryCache[slot] = memory;
    }

    void removeCacheEntry(int32_t slot) override
    {
        m_MemoryCache.erase(slot);
    }

    std::tuple<ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
            const Request& request, const std::vector<int32_t>& slots,
            MeasureTiming measure) override
    {
        ALOGV("ArmnnPreparedModel_1_2::BurstExecutorWithCache::execute");
        hidl_vec<hidl_memory> pools(slots.size());

        std::transform(slots.begin(), slots.end(), pools.begin(), [this](int32_t slot)
        {
            return m_MemoryCache[slot];
        });

        Request fullRequest = request;
        fullRequest.pools = std::move(pools);

        // Setup Callback
        ErrorStatus returnedStatus = ErrorStatus::GENERAL_FAILURE;
        hidl_vec<OutputShape> returnedOutputShapes;
        Timing returnedTiming;
        auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](ErrorStatus status,
                                                                            const hidl_vec<OutputShape>& outputShapes,
                                                                            const Timing& timing)
        {
            returnedStatus = status;
            returnedOutputShapes = outputShapes;
            returnedTiming = timing;
        };

        // Execute
        ALOGV("ArmnnPreparedModel_1_2::BurstExecutorWithCache executing");
        const Return<void> ret = m_PreparedModel->executeSynchronously(fullRequest, measure, cb);

        if (!ret.isOk() || returnedStatus != ErrorStatus::NONE)
        {
            ALOGE("ArmnnPreparedModel_1_2::BurstExecutorWithCache::error executing");
        }
        return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
    }

private:
    IPreparedModel* const m_PreparedModel;
    std::map<int, hidl_memory> m_MemoryCache;
};


template<typename HalVersion>
Return<void> ArmnnPreparedModel_1_2<HalVersion>::configureExecutionBurst(
        const sp<V1_2::IBurstCallback>& callback,
        const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
        const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
        V1_2::IPreparedModel::configureExecutionBurst_cb cb)
{
    ALOGV("ArmnnPreparedModel_1_2::configureExecutionBurst");
    const std::shared_ptr<ArmnnBurstExecutorWithCache> executorWithCache =
            std::make_shared<ArmnnBurstExecutorWithCache>(this);
    const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(callback,
                                                                       requestChannel,
                                                                       resultChannel,
                                                                       executorWithCache);

    if (burst == nullptr)
    {
        cb(ErrorStatus::GENERAL_FAILURE, {});
    }
    else
    {
        cb(ErrorStatus::NONE, burst);
    }
    return Void();
}

template<typename HalVersion>
void ArmnnPreparedModel_1_2<HalVersion>::ExecuteGraph(
        std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools,
        std::shared_ptr<armnn::InputTensors>& pInputTensors,
        std::shared_ptr<armnn::OutputTensors>& pOutputTensors,
        ArmnnCallback_1_2 cb)
{
    ALOGV("ArmnnPreparedModel_1_2::ExecuteGraph(...)");

    TimePoint driverEnd, deviceStart, deviceEnd;

    DumpTensorsIfRequired("Input", *pInputTensors);

    std::vector<std::pair<int, armnn::Tensor> > outputTensors = *pOutputTensors.get();
    std::vector<OutputShape> outputShapes(outputTensors.size());

    for (unsigned int i = 0; i < outputTensors.size(); i++)
    {
        std::pair<int, armnn::Tensor> outputTensorPair = outputTensors[i];
        const armnn::Tensor outputTensor = outputTensorPair.second;
        const armnn::TensorInfo outputTensorInfo = outputTensor.GetInfo();

        hidl_vec<uint32_t> dimensions;

        armnn::TensorShape tensorShape = outputTensorInfo.GetShape();
        const unsigned int numDims = tensorShape.GetNumDimensions();
        dimensions.resize(numDims);

        for (unsigned int outputIdx = 0u; outputIdx < numDims; ++outputIdx)
        {
            dimensions[outputIdx] = tensorShape[outputIdx];
        }
        outputShapes[i].dimensions = dimensions;
        outputShapes[i].isSufficient = true;
    }

    // run it
    try
    {
        if (cb.measureTiming == MeasureTiming::YES)
        {
            deviceStart = Now();
        }

        armnn::Status status = m_Runtime->EnqueueWorkload(m_NetworkId, *pInputTensors, *pOutputTensors);

        if (cb.measureTiming == MeasureTiming::YES)
        {
            deviceEnd = Now();
        }
        if (status != armnn::Status::Success)
        {
            ALOGW("EnqueueWorkload failed");
            cb.callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming,
                    "ArmnnPreparedModel_1_2::ExecuteGraph");
            return;
        }
    }
    catch (armnn::Exception& e)
    {
        ALOGW("armnn:Exception caught from EnqueueWorkload: %s", e.what());
        cb.callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::ExecuteGraph");
        return;
    }
    catch (std::exception& e)
    {
        ALOGE("std::exception caught from EnqueueWorkload: %s", e.what());
        cb.callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::ExecuteGraph");
        return;
    }

    DumpTensorsIfRequired("Output", *pOutputTensors);

    // Commit output buffers.
    // Note that we update *all* pools, even if they aren't actually used as outputs -
    // this is simpler and is what the CpuExecutor does.
    for (android::nn::RunTimePoolInfo& pool : *pMemPools)
    {
        pool.update();
    }

    if (cb.measureTiming == MeasureTiming::YES)
    {
        driverEnd = Now();
        Timing timing;
        timing.timeOnDevice = MicrosecondsDuration(deviceEnd, deviceStart);
        timing.timeInDriver = MicrosecondsDuration(driverEnd, cb.driverStart);
        cb.callback(ErrorStatus::NONE, outputShapes, timing, "ExecuteGraph");
    } else {
        cb.callback(ErrorStatus::NONE, outputShapes, g_NoTiming, "ExecuteGraph");
    }
}

template<typename HalVersion>
bool ArmnnPreparedModel_1_2<HalVersion>::ExecuteWithDummyInputs()
{
    std::vector<std::vector<char>> storage;
    armnn::InputTensors inputTensors;
    for (unsigned int i = 0; i < m_Model.inputIndexes.size(); i++)
    {
        const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
        storage.emplace_back(inputTensorInfo.GetNumBytes());
        const armnn::ConstTensor inputTensor(inputTensorInfo, storage.back().data());

        inputTensors.emplace_back(i, inputTensor);
    }

    armnn::OutputTensors outputTensors;
    for (unsigned int i = 0; i < m_Model.outputIndexes.size(); i++)
    {
        const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
        storage.emplace_back(outputTensorInfo.GetNumBytes());
        const armnn::Tensor outputTensor(outputTensorInfo, storage.back().data());

        outputTensors.emplace_back(i, outputTensor);
    }

    try
    {
        armnn::Status status = m_Runtime->EnqueueWorkload(m_NetworkId, inputTensors, outputTensors);
        if (status != armnn::Status::Success)
        {
            ALOGW("ExecuteWithDummyInputs: EnqueueWorkload failed");
            return false;
        }
    }
    catch (armnn::Exception& e)
    {
        ALOGW("ExecuteWithDummyInputs: armnn::Exception caught from EnqueueWorkload: %s", e.what());
        return false;
    }
    catch (std::exception& e)
    {
        ALOGE("ExecuteWithDummyInputs: std::exception caught from EnqueueWorkload: %s", e.what());
        return false;
    }
    return true;
}

template<typename HalVersion>
Return <ErrorStatus> ArmnnPreparedModel_1_2<HalVersion>::Execute(const Request& request,
                                                                 MeasureTiming measureTiming,
                                                                 armnnExecuteCallback_1_2 callback)
{
    TimePoint driverStart;

    if (measureTiming == MeasureTiming::YES)
    {
        driverStart = Now();
    }

    ALOGV("ArmnnPreparedModel_1_2::execute(): %s", GetModelSummary(m_Model).c_str());
    m_RequestCount++;

    if (!android::nn::validateRequest(request, m_Model))
    {
        callback(ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming, "ArmnnPreparedModel_1_2::execute");
        return ErrorStatus::INVALID_ARGUMENT;
    }

    if (!m_RequestInputsAndOutputsDumpDir.empty())
    {
        ALOGD("Dumping inputs and outputs for request %" PRIuPTR, reinterpret_cast<std::uintptr_t>(&callback));
    }

    // allocate the tensors on the heap, as they are passed to the request thread
    auto pInputTensors = std::make_shared<armnn::InputTensors>();
    auto pOutputTensors = std::make_shared<armnn::OutputTensors>();

    // map the memory pool into shared pointers
    // use a shared memory pools vector on the heap, as it is passed to the request thread
    auto pMemPools = std::make_shared<std::vector<android::nn::RunTimePoolInfo>>();

    if (!setRunTimePoolInfosFromHidlMemories(pMemPools.get(), request.pools))
    {
        callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::execute");
        return ErrorStatus::GENERAL_FAILURE;
    }

    // add the inputs and outputs with their data
    try
    {
        pInputTensors->reserve(request.inputs.size());
        for (unsigned int i = 0; i < request.inputs.size(); i++)
        {
            const auto& inputArg = request.inputs[i];

            const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
            const armnn::Tensor inputTensor = GetTensorForRequestArgument(inputArg, inputTensorInfo, *pMemPools);

            if (inputTensor.GetMemoryArea() == nullptr)
            {
                ALOGE("Cannot execute request. Error converting request input %u to tensor", i);
                callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::execute");
                return ErrorStatus::GENERAL_FAILURE;
            }

            pInputTensors->emplace_back(i, inputTensor);
        }

        pOutputTensors->reserve(request.outputs.size());
        std::vector<OutputShape> outputShapes(request.outputs.size());

        for (unsigned int i = 0; i < request.outputs.size(); i++)
        {
            const auto& outputArg = request.outputs[i];

            const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
            const armnn::Tensor outputTensor = GetTensorForRequestArgument(outputArg, outputTensorInfo, *pMemPools);
            if (outputTensor.GetMemoryArea() == nullptr)
            {
                ALOGE("Cannot execute request. Error converting request output %u to tensor", i);
                callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::execute");
                return ErrorStatus::GENERAL_FAILURE;
            }

            const size_t outputSize = outputTensorInfo.GetNumBytes();
            const size_t bufferSize = pMemPools->at(outputArg.location.poolIndex).getHidlMemory().size();
            pOutputTensors->emplace_back(i, outputTensor);

            hidl_vec<uint32_t> dimensions;

            armnn::TensorShape tensorShape = outputTensorInfo.GetShape();
            const unsigned int numDims = tensorShape.GetNumDimensions();
            dimensions.resize(numDims);

            for (unsigned int outputIdx = 0u; outputIdx < numDims; ++outputIdx)
            {
                dimensions[outputIdx] = tensorShape[outputIdx];
            }
            outputShapes[i].dimensions = dimensions;
            outputShapes[i].isSufficient = bufferSize >= outputSize;

            if (bufferSize < outputSize)
            {
                ALOGW("ArmnnPreparedModel_1_2::Execute failed");
                callback(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE,
                         outputShapes,
                         g_NoTiming,
                         "ArmnnPreparedModel_1_2::Execute");
                return ErrorStatus::NONE;
            }
        }
    }
    catch (armnn::Exception& e)
    {
        ALOGW("armnn::Exception caught while preparing for EnqueueWorkload: %s", e.what());
        callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::execute");
        return ErrorStatus::GENERAL_FAILURE;
    }
    catch (std::exception& e)
    {
        ALOGE("std::exception caught while preparing for EnqueueWorkload: %s", e.what());
        callback(ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_2::execute");
        return ErrorStatus::GENERAL_FAILURE;
    }

    ALOGV("ArmnnPreparedModel_1_2::execute(...) before PostMsg");
    // post the request for asynchronous execution
    ArmnnCallback_1_2 armnnCb;
    armnnCb.callback = callback;
    armnnCb.measureTiming = measureTiming;
    armnnCb.driverStart = driverStart;
    m_RequestThread.PostMsg(this, pMemPools, pInputTensors, pOutputTensors, armnnCb);
    ALOGV("ArmnnPreparedModel_1_2::execute(...) after PostMsg");
    return ErrorStatus::NONE;
}

#ifdef ARMNN_ANDROID_NN_V1_2
template class ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>;
#endif

} // namespace armnn_driver