aboutsummaryrefslogtreecommitdiff
path: root/ModelToINetworkConverter.cpp
diff options
context:
space:
mode:
authortelsoa01 <telmo.soares@arm.com>2018-03-09 13:51:08 +0000
committertelsoa01 <telmo.soares@arm.com>2018-03-09 14:05:45 +0000
commit5307bc10ac488261e84ac76b2dede6039ea3fe96 (patch)
tree09de3cc29026ca9722179f6beb25b9a66efcf88e /ModelToINetworkConverter.cpp
downloadandroid-nn-driver-5307bc10ac488261e84ac76b2dede6039ea3fe96.tar.gz
Release 18.02
Change-Id: I41a89c149534a7c354a58e2c66a32cba572fc0c1
Diffstat (limited to 'ModelToINetworkConverter.cpp')
-rw-r--r--ModelToINetworkConverter.cpp1848
1 files changed, 1848 insertions, 0 deletions
diff --git a/ModelToINetworkConverter.cpp b/ModelToINetworkConverter.cpp
new file mode 100644
index 00000000..68ebef00
--- /dev/null
+++ b/ModelToINetworkConverter.cpp
@@ -0,0 +1,1848 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+
+#define LOG_TAG "ArmnnDriver"
+
+#include "ModelToINetworkConverter.hpp"
+#include "OperationsUtils.h"
+
+#include <armnn/LayerSupport.hpp>
+#include <Permute.hpp>
+
+#include <log/log.h>
+#include <cassert>
+
+#include <boost/format.hpp>
+#include <boost/core/ignore_unused.hpp>
+#include <boost/test/tools/floating_point_comparison.hpp>
+#include <boost/cast.hpp>
+
+namespace
+{
+using namespace armnn_driver;
+using namespace android::nn;
+
+// Convenience function to log the reason for failing to convert a model.
+// @return Always returns false (so that it can be used by callers as a quick way to signal an error and return)
+template<class... Args>
+static bool Fail(const char* formatStr, Args&&... args)
+{
+ ALOGD(formatStr, std::forward<Args>(args)...);
+ return false;
+}
+
+// Convenience function to call an Is*Supported function and log caller name together with reason for lack of support.
+// Called as: IsLayerSupported(__func__, Is*Supported, a, b, c, d, e)
+template<typename IsLayerSupportedFunc, typename ... Args>
+bool IsLayerSupported(const char* funcName, IsLayerSupportedFunc f, Args&&... args)
+{
+ std::vector<char> unsupportedReason(1024+1);
+ bool isSupported = f(std::forward<Args>(args)..., unsupportedReason.data(), unsupportedReason.size()-1);
+ if(isSupported)
+ {
+ return true;
+ }
+ else
+ {
+ std::string sUnsupportedReason(unsupportedReason.data());
+ if (sUnsupportedReason.size() > 0)
+ {
+ ALOGD("%s: not supported by armnn: %s", funcName, sUnsupportedReason.c_str());
+ } else
+ {
+ ALOGD("%s: not supported by armnn", funcName);
+ }
+ return false;
+ }
+}
+
+armnn::TensorShape GetTensorShapeForOperand(const Operand& operand)
+{
+ return armnn::TensorShape(operand.dimensions.size(), operand.dimensions.data());
+}
+
+inline bool IsOperandTypeSupportedForTensors(OperandType type)
+{
+ return type == OperandType::TENSOR_FLOAT32 ||
+ type == OperandType::TENSOR_QUANT8_ASYMM ||
+ type == OperandType::TENSOR_INT32;
+}
+
+void CalcPadding(uint32_t input, uint32_t kernel, uint32_t stride, uint32_t& outPadHead, uint32_t& outPadTail,
+ android::nn::PaddingScheme scheme)
+{
+ int32_t padHead;
+ int32_t padTail;
+ calculateExplicitPadding(input, stride, kernel, scheme, &padHead, &padTail);
+ outPadHead = boost::numeric_cast<uint32_t>(padHead);
+ outPadTail = boost::numeric_cast<uint32_t>(padTail);
+}
+
+bool ValidateBroadcast(const Model& model, const Operation& operation, uint32_t numInputs)
+{
+ assert(operation.inputs.size() > 0); // This should have been validated by the caller
+ // validateModel() has been called already so we know the operation.inputs indexes are valid within model.operands.
+ const Operand& firstInput = model.operands[operation.inputs[0]];
+
+ // We don't support broadcasting yet - we require all input operands to have the same shape
+ for (uint32_t i = 1; i < numInputs; ++i)
+ {
+ const Operand& otherInput = model.operands[operation.inputs[i]];
+
+ if (firstInput.dimensions.size() != otherInput.dimensions.size())
+ {
+ return Fail("%s: Broadcasting not supported (Input 0 dims: %i Input %i dims: %i)",
+ __func__, firstInput.dimensions.size(), i, otherInput.dimensions.size());
+ }
+
+ for (unsigned int d = 0; d < firstInput.dimensions.size(); ++d)
+ {
+ if (firstInput.dimensions[d] != otherInput.dimensions[d])
+ {
+ return Fail("%s: Broadcasting not supported (Dimension %i size mismatch. "
+ "Input 0: %i Input %i: %i)",
+ __func__, d, firstInput.dimensions[d], i, otherInput.dimensions[d]);
+ }
+ }
+ }
+
+ return true;
+}
+
+Shape GetOperandShape(const Operand& operand)
+{
+ Shape shape;
+ shape.type = operand.type;
+ shape.dimensions = operand.dimensions;
+ shape.scale = operand.scale;
+ shape.offset = operand.zeroPoint;
+ return shape;
+}
+
+// ArmNN requires the bias scale to be equal to the product of the weight and input scales, which is also
+// what AndroidNN requires. However for some of the AndroidNN tests the values don't exactly match so
+// we accept some tolerance. We don't want to ArmNN itself to accept these inconsistencies as it is up to the user
+// (us, in this case) to ensure they match.
+void SanitizeBiasQuantizationScale(armnn::TensorInfo& biasInfo,
+ const armnn::TensorInfo& weightInfo, const armnn::TensorInfo& inputInfo)
+{
+ const float expectedBiasScale = weightInfo.GetQuantizationScale() * inputInfo.GetQuantizationScale();
+ if (biasInfo.GetQuantizationScale() != expectedBiasScale)
+ {
+ boost::math::fpc::close_at_tolerance<float> comparer(boost::math::fpc::percent_tolerance(1.0f));
+ if (comparer(biasInfo.GetQuantizationScale(), expectedBiasScale))
+ {
+ ALOGW("Bias quantization scale has been modified to match input*weights");
+ biasInfo.SetQuantizationScale(expectedBiasScale);
+ }
+ }
+}
+
+const armnn::PermutationVector NHWCToArmNN({ 0U, 2U, 3U, 1U });
+
+template <typename OSlot>
+armnn::IConnectableLayer& AddPermuteLayer(armnn::INetwork& network, OSlot& input,
+ const armnn::PermutationVector& mappings)
+{
+ // Add swizzle layer
+ armnn::IConnectableLayer* const layer = network.AddPermuteLayer(mappings);
+
+ assert(layer != nullptr);
+
+ // Connect intput to swizzle layer
+ input.Connect(layer->GetInputSlot(0));
+
+ // Setup swizzled output
+ const armnn::TensorInfo outInfo = armnnUtils::Permuted(input.GetTensorInfo(), mappings);
+ layer->GetOutputSlot(0).SetTensorInfo(outInfo);
+
+ return *layer;
+}
+
+armnn::IConnectableLayer& SwizzleInDeswizzleOut(armnn::INetwork& network, LayerInputHandle& input,
+ armnn::IConnectableLayer& firstLayer,
+ armnn::IConnectableLayer& lastLayer)
+{
+ static const armnn::PermutationVector ArmNNToNHWC({ 0U, 3U, 1U, 2U });
+
+ // Add swizzle layer
+ armnn::IConnectableLayer& swizzleLayer = AddPermuteLayer(network, input, NHWCToArmNN);
+
+ // Connect swizzled input to layer
+ swizzleLayer.GetOutputSlot(0).Connect(firstLayer.GetInputSlot(0));
+
+ // Add deswizzle layer
+ armnn::IConnectableLayer& deswizzleLayer = AddPermuteLayer(network, lastLayer.GetOutputSlot(0), ArmNNToNHWC);
+
+ return deswizzleLayer;
+}
+
+armnn::IConnectableLayer& SwizzleInDeswizzleOut(armnn::INetwork& network, LayerInputHandle& input,
+ armnn::IConnectableLayer& layer)
+{
+ return SwizzleInDeswizzleOut(network, input, layer, layer);
+}
+} // namespace
+
+namespace armnn_driver
+{
+
+class ConstTensorPin
+{
+public:
+ // Creates an invalid tensor pin (can be used to signal errors)
+ ConstTensorPin() {}
+
+ // @param tensorInfo TensorInfo associated with the tensor.
+ // @param valueStart Start address of tensor data. Belongs to one of the memory pools associated with
+ // the model being converted.
+ // @param numBytes Number of bytes for the tensor data.
+ ConstTensorPin(const armnn::TensorInfo& tensorInfo, const void* valueStart, uint32_t numBytes,
+ const armnn::PermutationVector& mappings)
+ {
+ boost::ignore_unused(numBytes);
+ assert(tensorInfo.GetNumBytes() == numBytes);
+
+ const bool needsSwizzling = (mappings.GetSize() > 0);
+ if (needsSwizzling)
+ {
+ m_SwizzledTensorData.resize(tensorInfo.GetNumBytes());
+ SwizzleAndroidNn4dTensorToArmNn(tensorInfo, valueStart, m_SwizzledTensorData.data(), mappings);
+
+ m_ConstTensor = armnn::ConstTensor(armnnUtils::Permuted(tensorInfo, mappings), m_SwizzledTensorData.data());
+ }
+ else
+ {
+ m_ConstTensor = armnn::ConstTensor(tensorInfo, valueStart);
+ }
+ }
+
+ ConstTensorPin(const ConstTensorPin& other) = delete;
+ ConstTensorPin(ConstTensorPin&& other) = default;
+
+ bool IsValid() const { return m_ConstTensor.GetMemoryArea() != nullptr; }
+ const armnn::ConstTensor& GetConstTensor() const { return m_ConstTensor; }
+
+private:
+ armnn::ConstTensor m_ConstTensor;
+ // Owned memory for swizzled tensor data, only required if the tensor needed
+ // swizzling. Otherwise, @ref m_ConstTensor will reference memory from one of
+ // the pools associated with the model being converted.
+ std::vector<uint8_t> m_SwizzledTensorData;
+};
+
+ModelToINetworkConverter::ModelToINetworkConverter(armnn::Compute compute, const Model& model,
+ const std::set<unsigned int>& forcedUnsupportedOperations)
+ : m_Compute(compute)
+ , m_Model(model)
+ , m_ForcedUnsupportedOperations(forcedUnsupportedOperations)
+ , m_Network(nullptr, nullptr)
+ , m_ConversionResult(ConversionResult::Success)
+{
+ try
+ {
+ Convert();
+ }
+ catch (armnn::Exception& e)
+ {
+ m_ConversionResult = ConversionResult::UnsupportedFeature;
+ ALOGE("%s: Unexpected exception: %s", __func__, e.what());
+ assert(false);
+ }
+}
+
+void ModelToINetworkConverter::Convert()
+{
+ ALOGV("ModelToINetworkConverter::Convert(): %s", GetModelSummary(m_Model).c_str());
+
+ // map the memory pool into shared pointers
+ m_MemPools.clear();
+ if (!setRunTimePoolInfosFromHidlMemories(&m_MemPools, m_Model.pools))
+ {
+ Fail("%s: Setting of run time pool infos from Hidl Memories has failed.", __func__);
+ m_ConversionResult = ConversionResult::ErrorMappingPools;
+ return;
+ }
+
+ uint32_t totalPoolSize = 0;
+ for (auto&& pool : m_Model.pools)
+ {
+ totalPoolSize += pool.size();
+ }
+
+ // Create armnn::INetwork
+ m_Network = armnn::INetwork::Create();
+
+ // add operations to it
+ // track which layer outputs each operand
+ m_OutputSlotForOperand = std::vector<armnn::IOutputSlot*>(m_Model.operands.size(), nullptr);
+
+ try
+ {
+ for (uint32_t i = 0; i < m_Model.inputIndexes.size(); i++)
+ {
+ // inputs in android nn are represented by operands
+ uint32_t inputIndex = m_Model.inputIndexes[i];
+ const Operand& operand = m_Model.operands[inputIndex];
+ const armnn::TensorInfo& tensor = GetTensorInfoForOperand(operand);
+ armnn::IConnectableLayer* layer = m_Network->AddInputLayer(i);
+
+ armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
+ outputSlot.SetTensorInfo(GetTensorInfoForOperand(operand));
+
+ // store for later layers
+ m_OutputSlotForOperand[inputIndex] = &outputSlot;
+ }
+ }
+ catch (UnsupportedOperand& e)
+ {
+ Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str());
+ m_ConversionResult = ConversionResult::UnsupportedFeature;
+ }
+ catch (const armnn::InvalidArgumentException& e)
+ {
+ Fail("%s: Failed to convert input operand to TensorShape: %s", __func__, e.what());
+ m_ConversionResult = ConversionResult::UnsupportedFeature;
+ }
+
+ for (uint32_t operationIdx = 0; operationIdx < m_Model.operations.size(); operationIdx++)
+ {
+ const auto& operation = m_Model.operations[operationIdx];
+
+ bool ok = true;
+ if (m_ForcedUnsupportedOperations.find(operationIdx) != m_ForcedUnsupportedOperations.end())
+ {
+ Fail("%s: Operation at index %i has been forced to be unsupported.", __func__, operationIdx);
+ ok = false;
+ }
+
+ if (ok)
+ {
+ try
+ {
+ ok = ConvertOperation(operation);
+ }
+ catch (UnsupportedOperand& e)
+ {
+ Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str());
+ ok = false;
+ }
+ catch (const armnn::InvalidArgumentException& e)
+ {
+ Fail("%s: Failed to convert operation in %s", __func__, e.what());
+ ok = false;
+ }
+ }
+
+ // Store whether this operation was successfully converted.
+ m_OperationSupported.emplace(operationIdx, ok);
+
+ // Any single operation failing will fail the entire conversion.
+ // We still need to continue and check the other ones.
+ if (!ok)
+ {
+ m_ConversionResult = ConversionResult::UnsupportedFeature;
+ }
+ }
+ try
+ {
+ if (m_ConversionResult == ConversionResult::Success)
+ {
+ for (uint32_t i = 0; i < m_Model.outputIndexes.size(); i++)
+ {
+ // outputs in android nn are represented by operands
+ uint32_t outputIndex = m_Model.outputIndexes[i];
+ const Operand& operand = m_Model.operands[outputIndex];
+ const armnn::TensorInfo& tensor = GetTensorInfoForOperand(operand);
+ armnn::IConnectableLayer* layer = m_Network->AddOutputLayer(i);
+
+ assert(m_OutputSlotForOperand[outputIndex]);
+ m_OutputSlotForOperand[outputIndex]->Connect(layer->GetInputSlot(0));
+ }
+ }
+ }
+ catch (const armnn::InvalidArgumentException& e)
+ {
+ Fail("%s: Failed to convert output operand to TensorShape: %s", __func__, e.what());
+ m_ConversionResult = ConversionResult::UnsupportedFeature;
+ }
+}
+
+bool ModelToINetworkConverter::ConvertOperation(const Operation& operation)
+{
+ switch (operation.type)
+ {
+ case OperationType::ADD: return ConvertAdd(operation);
+ case OperationType::AVERAGE_POOL_2D: return ConvertAveragePool2d(operation);
+ case OperationType::CONCATENATION: return ConvertConcatenation(operation);
+ case OperationType::CONV_2D: return ConvertConv2d(operation);
+ case OperationType::DEPTHWISE_CONV_2D: return ConvertDepthwiseConv2d(operation);
+ case OperationType::FLOOR: return ConvertFloor(operation);
+ case OperationType::FULLY_CONNECTED: return ConvertFullyConnected(operation);
+ case OperationType::LOCAL_RESPONSE_NORMALIZATION: return ConvertLocalResponseNormalization(operation);
+ case OperationType::LOGISTIC: return ConvertLogistic(operation);
+ case OperationType::L2_NORMALIZATION: return ConvertL2Normalization(operation);
+ case OperationType::L2_POOL_2D: return ConvertL2Pool2d(operation);
+ case OperationType::MAX_POOL_2D: return ConvertMaxPool2d(operation);
+ case OperationType::MUL: return ConvertMul(operation);
+ case OperationType::RELU: return ConvertReLu(operation);
+ case OperationType::RELU1: return ConvertReLu1(operation);
+ case OperationType::RELU6: return ConvertReLu6(operation);
+ case OperationType::SOFTMAX: return ConvertSoftmax(operation);
+ case OperationType::TANH: return ConvertTanH(operation);
+ case OperationType::RESHAPE: return ConvertReshape(operation);
+ case OperationType::RESIZE_BILINEAR: return ConvertResizeBilinear(operation);
+ default: return Fail("%s: Operation type %s not supported in ArmnnDriver",
+ __func__, toString(operation.type).c_str());
+ }
+}
+
+class LayerInputHandle
+{
+public:
+ LayerInputHandle()
+ : m_OutputSlot(nullptr)
+ , m_Valid(false)
+ {}
+
+ LayerInputHandle(bool valid, armnn::IOutputSlot* outputSlot, armnn::TensorInfo tensorInfo)
+ : m_OutputSlot(outputSlot)
+ , m_Valid(valid)
+ , m_TensorInfo(tensorInfo)
+ {}
+
+ bool IsValid() const { return m_Valid; }
+ void Connect(armnn::IInputSlot& inputSlot)
+ {
+ assert(IsValid());
+
+ if (m_OutputSlot)
+ {
+ m_OutputSlot->Connect(inputSlot);
+ }
+ }
+ const armnn::TensorInfo& GetTensorInfo() const { return m_TensorInfo; }
+
+private:
+ armnn::IOutputSlot* m_OutputSlot;
+ bool m_Valid;
+ armnn::TensorInfo m_TensorInfo;
+};
+
+bool ModelToINetworkConverter::ConvertAdd(const Operation& operation)
+{
+ LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0);
+ LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1);
+
+ if (!input0.IsValid() || !input1.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ ActivationFn activationFunction;
+ if (!GetInputActivationFunction(operation, 2, activationFunction))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* outputOperand = GetOutputOperand(operation, 0);
+ if (!outputOperand)
+ {
+ return false;
+ }
+
+ const armnn::TensorInfo outInfo = GetTensorInfoForOperand(*outputOperand);
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsAdditionSupported,
+ m_Compute,
+ input0.GetTensorInfo(),
+ input1.GetTensorInfo(),
+ outInfo))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* const startLayer = m_Network->AddAdditionLayer();
+ armnn::IConnectableLayer* const endLayer = ProcessActivation(outInfo, activationFunction, startLayer);
+
+ const armnn::TensorInfo& inputTensorInfo0 = input0.GetTensorInfo();
+ const armnn::TensorInfo& inputTensorInfo1 = input1.GetTensorInfo();
+
+ if (endLayer != nullptr)
+ {
+ // If the number of dimensions do not match then we need to add degenerate dimensions
+ // to the "smaller" tensor using a reshape:
+ // Small Big
+ // | |
+ // Reshape |
+ // \ /
+ // Add
+ if (inputTensorInfo0.GetNumDimensions() != inputTensorInfo1.GetNumDimensions())
+ {
+ bool input0IsBigger = inputTensorInfo0.GetNumDimensions() > inputTensorInfo1.GetNumDimensions();
+
+ LayerInputHandle& smallTensorHandle = input0IsBigger ? input1 : input0;
+ const armnn::TensorInfo& smallTensorDims = smallTensorHandle.GetTensorInfo();
+
+ LayerInputHandle& bigTensorHandle = input0IsBigger ? input0 : input1;
+ const armnn::TensorInfo& bigTensorDims = bigTensorHandle.GetTensorInfo();
+
+ std::vector<unsigned int> reshapedDims(bigTensorDims.GetNumDimensions(), 1);
+ unsigned int sizeDifference = bigTensorDims.GetNumDimensions() - smallTensorDims.GetNumDimensions();
+ for (unsigned i = sizeDifference; i < bigTensorDims.GetNumDimensions(); ++i)
+ {
+ reshapedDims[i] = smallTensorDims.GetShape()[i-sizeDifference];
+ }
+ armnn::TensorInfo reshapedInfo = smallTensorDims;
+ reshapedInfo.SetShape(armnn::TensorShape{ static_cast<unsigned int>(reshapedDims.size()),
+ reshapedDims.data() });
+
+ armnn::ReshapeDescriptor reshapeDesc;
+ reshapeDesc.m_TargetShape = reshapedInfo.GetShape();
+ armnn::IConnectableLayer* const reshapeLayer = m_Network->AddReshapeLayer(reshapeDesc);
+ smallTensorHandle.Connect(reshapeLayer->GetInputSlot(0));
+ reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo);
+
+ // Connect the outputs from new reshape and original input layer
+ reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(0));
+ bigTensorHandle.Connect(startLayer->GetInputSlot(1));
+ }
+ else
+ {
+ input0.Connect(startLayer->GetInputSlot(0));
+ input1.Connect(startLayer->GetInputSlot(1));
+ }
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *endLayer);
+ }
+ else
+ {
+ return Fail("%s: ProcessActivation failed", __func__);
+ }
+}
+
+bool ModelToINetworkConverter::ConvertAveragePool2d(const Operation& operation)
+{
+ return ConvertPooling2d(operation, __func__, armnn::PoolingAlgorithm::Average);
+}
+
+bool ModelToINetworkConverter::ConvertConcatenation(const Operation& operation)
+{
+ // The first N (0..N-1) inputs are tensors. The Nth input is the concatenation axis.
+ if (operation.inputs.size() <= 1)
+ {
+ return Fail("%s: Operation has insufficient arguments", __func__);
+ }
+
+ // Get inputs and outputs
+ const std::size_t numInputTensors = operation.inputs.size() - 1;
+
+ std::vector<LayerInputHandle> inputHandles;
+ std::vector<armnn::TensorShape> inputShapes;
+
+ inputHandles.reserve(numInputTensors);
+ inputShapes.reserve(numInputTensors);
+
+ for (uint32_t i = 0; i < numInputTensors; ++i)
+ {
+ const Operand* const operand = GetInputOperand(operation, i);
+ if (!operand)
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ inputShapes.emplace_back(GetTensorShapeForOperand(*operand));
+ inputHandles.emplace_back(ConvertToLayerInputHandle(operation, i));
+ if (!inputHandles.back().IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+ }
+
+ assert(inputShapes.size() == inputHandles.size());
+
+ uint32_t concatDim;
+ if (!GetInputScalar(operation, numInputTensors, OperandType::INT32, concatDim))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* const outputOperand = GetOutputOperand(operation, 0);
+ if (!outputOperand)
+ {
+ return Fail("%s: Operation has no outputs", __func__);
+ }
+ const armnn::TensorShape outputShape = GetTensorShapeForOperand(*outputOperand);
+
+ // Create an armnn merger layer descriptor - this will also perform validation on the input shapes
+ armnn::OriginsDescriptor mergerDescriptor;
+ try
+ {
+ mergerDescriptor = armnn::CreateMergerDescriptorForConcatenation(inputShapes.begin(), inputShapes.end(),
+ concatDim);
+ }
+ catch (const armnn::Exception& error)
+ {
+ return Fail("%s: Error preparing merger descriptor. %s", __func__, error.what());
+ }
+
+ // Validate the output shape is correct given the input shapes (which have just been validated)
+ unsigned int numDimensions = inputShapes[0].GetNumDimensions();
+ if (outputShape.GetNumDimensions() != numDimensions)
+ {
+ return Fail("%s: Output shape has wrong number of dimensions", __func__);
+ }
+
+ unsigned int outputSizeAlongConcatenatedDimension = 0;
+ for (unsigned int i = 0; i < inputShapes.size(); i++)
+ {
+ outputSizeAlongConcatenatedDimension += inputShapes[i][concatDim];
+ }
+
+ for (unsigned int i = 0; i < numDimensions; ++i)
+ {
+ if (i == concatDim)
+ {
+ if (outputShape[i] != outputSizeAlongConcatenatedDimension)
+ {
+ return Fail("%s: Invalid output shape", __func__);
+ }
+ }
+ else
+ {
+ if (outputShape[i] != inputShapes[0][i])
+ {
+ return Fail("%s: Invalid output shape", __func__);
+ }
+ }
+ }
+
+ std::vector<const armnn::TensorInfo*> inputTensorInfos;
+ std::transform(inputHandles.begin(), inputHandles.end(), std::back_inserter(inputTensorInfos),
+ [](const LayerInputHandle& h) -> const armnn::TensorInfo*{ return &h.GetTensorInfo(); });
+ if (!IsLayerSupported(__func__,
+ armnn::IsMergerSupported,
+ m_Compute,
+ inputTensorInfos,
+ mergerDescriptor))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* layer = m_Network->AddMergerLayer(mergerDescriptor);
+ assert(layer != nullptr);
+
+ // Connect inputs to the layer
+ const int numInputSlots = layer->GetNumInputSlots();
+ assert(static_cast<std::size_t>(numInputSlots) == inputHandles.size());
+ for (int i = 0; i < numInputSlots; ++i)
+ {
+ inputHandles[static_cast<unsigned int>(i)].Connect(layer->GetInputSlot(i));
+ }
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *layer);
+}
+
+bool ModelToINetworkConverter::ConvertConv2d(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ const armnn::TensorInfo swizzledInputInfo = armnnUtils::Permuted(inputInfo, NHWCToArmNN);
+ const armnn::TensorInfo swizzledOutputInfo = armnnUtils::Permuted(outputInfo, NHWCToArmNN);
+
+ // ArmNN does not currently support non-fixed weights or bias
+ const ConstTensorPin weightsPin = ConvertOperationInputToConstTensorPin(operation, 1, NHWCToArmNN);
+ const ConstTensorPin biasPin = ConvertOperationInputToConstTensorPin(operation, 2);
+
+ if (!weightsPin.IsValid() || !biasPin.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ armnn::ConstTensor weights = weightsPin.GetConstTensor();
+ armnn::ConstTensor bias = biasPin.GetConstTensor();
+ SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), swizzledInputInfo);
+
+ armnn::Convolution2dDescriptor desc;
+ ActivationFn activation;
+
+ if (operation.inputs.size() == 10)
+ {
+ if (!GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadLeft) ||
+ !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadRight) ||
+ !GetInputScalar(operation, 5, OperandType::INT32, desc.m_PadTop) ||
+ !GetInputScalar(operation, 6, OperandType::INT32, desc.m_PadBottom) ||
+ !GetInputScalar(operation, 7, OperandType::INT32, desc.m_StrideX) ||
+ !GetInputScalar(operation, 8, OperandType::INT32, desc.m_StrideY) ||
+ !GetInputActivationFunction(operation, 9, activation))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+ }
+ else if (operation.inputs.size() == 7)
+ {
+ android::nn::PaddingScheme paddingScheme;
+
+ if (!GetInputPaddingScheme(operation, 3, paddingScheme) ||
+ !GetInputScalar(operation, 4, OperandType::INT32, desc.m_StrideX) ||
+ !GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideY) ||
+ !GetInputActivationFunction(operation, 6, activation))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const uint32_t kernelX = weights.GetShape()[3];
+ const uint32_t kernelY = weights.GetShape()[2];
+ const uint32_t inputX = swizzledInputInfo.GetShape()[3];
+ const uint32_t inputY = swizzledInputInfo.GetShape()[2];
+
+ CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
+ CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
+ }
+ else
+ {
+ return Fail("%s: Unsupported number of operation inputs", __func__);
+ }
+
+ desc.m_BiasEnabled = true;
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsConvolution2dSupported,
+ m_Compute,
+ swizzledInputInfo,
+ desc,
+ weights.GetInfo()))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* startLayer = m_Network->AddConvolution2dLayer(desc, weights, bias);
+ armnn::IConnectableLayer* endLayer = ProcessActivation(swizzledOutputInfo, activation, startLayer);
+
+ if (endLayer != nullptr)
+ {
+ armnn::IConnectableLayer& outSwizzleLayer = SwizzleInDeswizzleOut(*m_Network, input, *startLayer, *endLayer);
+ return SetupAndTrackLayerOutputSlot(operation, 0, outSwizzleLayer);
+ }
+ else
+ {
+ return Fail("%s: ProcessActivation failed", __func__);
+ }
+}
+
+bool ModelToINetworkConverter::ConvertDepthwiseConv2d(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ const armnn::TensorInfo swizzledInputInfo = armnnUtils::Permuted(inputInfo, NHWCToArmNN);
+ const armnn::TensorInfo swizzledOutputInfo = armnnUtils::Permuted(outputInfo, NHWCToArmNN);
+
+ // ArmNN does not currently support non-fixed weights or bias
+
+ // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
+ // but in ArmNN it needs to be [ M, I, H, W ]
+ const Operand* weightsOperand = GetInputOperand(operation, 1);
+
+ if (weightsOperand == nullptr)
+ {
+ return Fail("%s: Operand is invalid", __func__);
+ }
+
+ // Reinterpret weight data as [ H, W, I, M ]
+ armnn::TensorShape weightsShape({ weightsOperand->dimensions[1], weightsOperand->dimensions[2],
+ inputInfo.GetShape()[3],
+ weightsOperand->dimensions[3] / inputInfo.GetShape()[3] });
+
+ // Swizzle weight data [ H, W, I, M ] -> [ M, I, H, W ]
+ const armnn::PermutationVector HWIMToMIHW = { 2U, 3U, 1U, 0U };
+ ConstTensorPin weightsPin = ConvertOperationInputToConstTensorPin(operation, 1, HWIMToMIHW, &weightsShape);
+
+ // Bias is a 1D tensor
+ ConstTensorPin biasPin = ConvertOperationInputToConstTensorPin(operation, 2);
+
+ if (!weightsPin.IsValid() || !biasPin.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ armnn::ConstTensor weights = weightsPin.GetConstTensor();
+ armnn::ConstTensor bias = biasPin.GetConstTensor();
+ SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), swizzledInputInfo);
+
+ armnn::DepthwiseConvolution2dDescriptor desc;
+ ActivationFn activation;
+
+ if (operation.inputs.size() == 11)
+ {
+ if (!GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadLeft) ||
+ !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadRight) ||
+ !GetInputScalar(operation, 5, OperandType::INT32, desc.m_PadTop) ||
+ !GetInputScalar(operation, 6, OperandType::INT32, desc.m_PadBottom) ||
+ !GetInputScalar(operation, 7, OperandType::INT32, desc.m_StrideX) ||
+ !GetInputScalar(operation, 8, OperandType::INT32, desc.m_StrideY) ||
+ !GetInputActivationFunction(operation, 10, activation))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+ }
+ else if (operation.inputs.size() == 8)
+ {
+ android::nn::PaddingScheme paddingScheme;
+
+ if (!GetInputPaddingScheme(operation, 3, paddingScheme) ||
+ !GetInputScalar(operation, 4, OperandType::INT32, desc.m_StrideX) ||
+ !GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideY) ||
+ !GetInputActivationFunction(operation, 7, activation))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const uint32_t kernelX = weights.GetShape()[3];
+ const uint32_t kernelY = weights.GetShape()[2];
+ const uint32_t inputX = swizzledInputInfo.GetShape()[3];
+ const uint32_t inputY = swizzledInputInfo.GetShape()[2];
+
+ CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
+ CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
+ }
+ else
+ {
+ return Fail("%s: Unsupported number of operation inputs", __func__);
+ }
+
+ desc.m_BiasEnabled = true;
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsDepthwiseConvolutionSupported,
+ m_Compute,
+ swizzledInputInfo,
+ desc,
+ weights.GetInfo()))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* startLayer = m_Network->AddDepthwiseConvolution2dLayer(desc, weights, bias);
+ armnn::IConnectableLayer* endLayer = ProcessActivation(swizzledOutputInfo, activation, startLayer);
+
+ if (endLayer != nullptr)
+ {
+ armnn::IConnectableLayer& outSwizzleLayer = SwizzleInDeswizzleOut(*m_Network, input, *startLayer, *endLayer);
+ return SetupAndTrackLayerOutputSlot(operation, 0, outSwizzleLayer);
+ }
+ else
+ {
+ return Fail("%s: ProcessActivation failed", __func__);
+ }
+}
+
+bool ModelToINetworkConverter::ConvertFloor(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* const outputOperand = GetOutputOperand(operation, 0);
+ if (!outputOperand)
+ {
+ return Fail("%s: Operation has invalid outputs", __func__);
+ }
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsFloorSupported,
+ m_Compute,
+ input.GetTensorInfo(),
+ GetTensorInfoForOperand(*outputOperand)))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* layer = m_Network->AddFloorLayer();
+ assert(layer != nullptr);
+ input.Connect(layer->GetInputSlot(0));
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *layer);
+}
+
+bool ModelToINetworkConverter::ConvertFullyConnected(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ armnn::TensorInfo reshapedInfo = inputInfo;
+
+ if (inputInfo.GetNumDimensions() > 2U)
+ {
+ unsigned int dim1 = inputInfo.GetShape()[1];
+ for (unsigned int i = 2U; i < inputInfo.GetNumDimensions(); ++i)
+ {
+ dim1 *= inputInfo.GetShape()[i];
+ }
+ reshapedInfo.SetShape(armnn::TensorShape({inputInfo.GetShape()[0], dim1}));
+ }
+
+ // ArmNN does not currently support non-fixed weights or bias
+ ConstTensorPin weightsPin = ConvertOperationInputToConstTensorPin(operation, 1); // 2D
+ ConstTensorPin biasPin = ConvertOperationInputToConstTensorPin(operation, 2); // 1D
+
+ if (!weightsPin.IsValid() || !biasPin.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ // ensuring that the bias value is within 1% of the weights input (small float differences can exist)
+ armnn::ConstTensor weights = weightsPin.GetConstTensor();
+ armnn::ConstTensor bias = biasPin.GetConstTensor();
+ SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), reshapedInfo);
+
+ ActivationFn activationFunction;
+ if (!GetInputActivationFunction(operation, 3, activationFunction))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ armnn::FullyConnectedDescriptor desc;
+ desc.m_TransposeWeightMatrix = true;
+ desc.m_BiasEnabled = true;
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsFullyConnectedSupported,
+ m_Compute,
+ reshapedInfo,
+ desc))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* startLayer = m_Network->AddFullyConnectedLayer(desc, weights, bias);
+ armnn::IConnectableLayer* endLayer = ProcessActivation(outputInfo, activationFunction, startLayer);
+
+ if (endLayer != nullptr)
+ {
+ if (inputInfo.GetNumDimensions() > 2U)
+ {
+ armnn::ReshapeDescriptor reshapeDescriptor;
+ reshapeDescriptor.m_TargetShape = reshapedInfo.GetShape();
+
+ armnn::IConnectableLayer* reshapeLayer = m_Network->AddReshapeLayer(reshapeDescriptor);
+ assert(reshapeLayer != nullptr);
+ input.Connect(reshapeLayer->GetInputSlot(0));
+ reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo);
+ reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(0));
+ }
+ else
+ {
+ input.Connect(startLayer->GetInputSlot(0));
+ }
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *endLayer);
+ }
+ else
+ {
+ return Fail("%s: ProcessActivation failed", __func__);
+ }
+}
+
+bool ModelToINetworkConverter::ConvertLocalResponseNormalization(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ const armnn::TensorInfo swizzledInputInfo = armnnUtils::Permuted(inputInfo, NHWCToArmNN);
+ const armnn::TensorInfo swizzledOutputInfo = armnnUtils::Permuted(outputInfo, NHWCToArmNN);
+
+ armnn::NormalizationDescriptor descriptor;
+
+ descriptor.m_NormChannelType = armnn::NormalizationAlgorithmChannel::Across;
+ descriptor.m_NormMethodType = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+
+ if (!input.IsValid() ||
+ !GetInputScalar(operation, 1, OperandType::INT32, descriptor.m_NormSize) ||
+ !GetInputFloat32(operation, 2, descriptor.m_K) ||
+ !GetInputFloat32(operation, 3, descriptor.m_Alpha) ||
+ !GetInputFloat32(operation, 4, descriptor.m_Beta))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ // ArmNN expects normSize to be the full size of the normalization
+ // window rather than the radius as in AndroidNN.
+ descriptor.m_NormSize = 1 + (2 * descriptor.m_NormSize);
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsNormalizationSupported,
+ m_Compute,
+ swizzledInputInfo,
+ swizzledOutputInfo,
+ descriptor))
+ {
+ return false;
+ }
+
+
+ armnn::IConnectableLayer* layer = m_Network->AddNormalizationLayer(descriptor);
+ assert(layer != nullptr);
+ layer->GetOutputSlot(0).SetTensorInfo(swizzledOutputInfo);
+
+ armnn::IConnectableLayer& outSwizzleLayer = SwizzleInDeswizzleOut(*m_Network, input, *layer);
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, outSwizzleLayer);
+}
+
+bool ModelToINetworkConverter::ConvertLogistic(const Operation& operation)
+{
+ armnn::ActivationDescriptor desc;
+ desc.m_Function == armnn::ActivationFunction::Sigmoid;
+
+ return ConvertToActivation(operation, __func__, desc);
+}
+
+bool ModelToINetworkConverter::ConvertL2Normalization(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ const armnn::TensorInfo swizzledInputInfo = armnnUtils::Permuted(inputInfo, NHWCToArmNN);
+ const armnn::TensorInfo swizzledOutputInfo = armnnUtils::Permuted(outputInfo, NHWCToArmNN);
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsL2NormalizationSupported,
+ m_Compute,
+ swizzledInputInfo))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* layer = m_Network->AddL2NormalizationLayer();
+ assert(layer != nullptr);
+ layer->GetOutputSlot(0).SetTensorInfo(swizzledOutputInfo);
+
+ armnn::IConnectableLayer& outSwizzleLayer = SwizzleInDeswizzleOut(*m_Network, input, *layer);
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, outSwizzleLayer);
+}
+
+bool ModelToINetworkConverter::ConvertL2Pool2d(const Operation& operation)
+{
+ return ConvertPooling2d(operation, __func__, armnn::PoolingAlgorithm::L2);
+}
+
+bool ModelToINetworkConverter::ConvertMaxPool2d(const Operation& operation)
+{
+ return ConvertPooling2d(operation, __func__, armnn::PoolingAlgorithm::Max);
+}
+
+bool ModelToINetworkConverter::ConvertMul(const Operation& operation)
+{
+ LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0);
+ LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1);
+
+ if (!input0.IsValid() || !input1.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ ActivationFn activationFunction;
+ if (!GetInputActivationFunction(operation, 2, activationFunction))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ if (!ValidateBroadcast(m_Model, operation, 2u))
+ {
+ return Fail("%s is invalid due to broadcasting", __func__);
+ }
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsMultiplicationSupported,
+ m_Compute,
+ input0.GetTensorInfo(),
+ input1.GetTensorInfo()))
+ {
+ return false;
+ }
+
+ const Operand* outputOperand = GetOutputOperand(operation, 0);
+
+ if (outputOperand == nullptr)
+ {
+ return false;
+ }
+
+ const armnn::TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand);
+
+ armnn::IConnectableLayer* const startLayer = m_Network->AddMultiplicationLayer();
+ armnn::IConnectableLayer* const endLayer = ProcessActivation(outInfo, activationFunction, startLayer);
+
+ if (endLayer != nullptr)
+ {
+ input0.Connect(startLayer->GetInputSlot(0));
+ input1.Connect(startLayer->GetInputSlot(1));
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *endLayer);
+ }
+ else
+ {
+ return Fail("%s: ProcessActivation failed", __func__);
+ }
+}
+
+bool ModelToINetworkConverter::ConvertReLu(const Operation& operation)
+{
+ armnn::ActivationDescriptor desc;
+ desc.m_Function = armnn::ActivationFunction::ReLu;
+
+ return ConvertToActivation(operation, __func__, desc);
+}
+
+bool ModelToINetworkConverter::ConvertReLu1(const Operation& operation)
+{
+ armnn::ActivationDescriptor desc;
+ desc.m_Function = armnn::ActivationFunction::BoundedReLu;
+ desc.m_A = 1.0f;
+ desc.m_B = -1.0f;
+
+ return ConvertToActivation(operation, __func__, desc);
+}
+
+bool ModelToINetworkConverter::ConvertReLu6(const Operation& operation)
+{
+ armnn::ActivationDescriptor desc;
+ desc.m_Function = armnn::ActivationFunction::BoundedReLu;
+ desc.m_A = 6.0f;
+
+ return ConvertToActivation(operation, __func__, desc);
+}
+
+bool ModelToINetworkConverter::ConvertSoftmax(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ armnn::SoftmaxDescriptor desc;
+ if (!GetInputFloat32(operation, 1, desc.m_Beta))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsSoftmaxSupported,
+ m_Compute,
+ input.GetTensorInfo(),
+ desc))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* layer = m_Network->AddSoftmaxLayer(desc);
+ assert(layer != nullptr);
+ input.Connect(layer->GetInputSlot(0));
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *layer);
+}
+
+bool ModelToINetworkConverter::ConvertTanH(const Operation& operation)
+{
+ armnn::ActivationDescriptor desc;
+ desc.m_Function = armnn::ActivationFunction::TanH;
+ desc.m_A = 1.0f; // android nn does not support tanH parameters
+ desc.m_B = 1.0f; // set to 1.0f for unity scaling
+
+ return ConvertToActivation(operation, __func__, desc);
+}
+
+bool ModelToINetworkConverter::ConvertReshape(const Operation& operation)
+{
+ const Operand* inputOperand = GetInputOperand(operation, 0);
+ const Operand* requestedShapeOperand = GetInputOperand(operation, 1);
+ const Operand* outputOperand = GetOutputOperand(operation, 0);
+
+ if (inputOperand == nullptr
+ || requestedShapeOperand == nullptr
+ || outputOperand == nullptr)
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+
+ if (requestedShapeOperand->dimensions.size() != 1)
+ {
+ return Fail("%s: Input 1 expected to be one-dimensional (found %i dimensions)",
+ __func__, requestedShapeOperand->dimensions.size());
+ }
+
+ std::vector<int32_t> targetDimensions;
+ if (!GetTensorInt32Values(*requestedShapeOperand, targetDimensions))
+ {
+ return Fail("%s: Could not read values of input 1", __func__);
+ }
+
+ const Shape inputOperandShape = GetOperandShape(*inputOperand);
+
+ Shape requestedShape;
+ // targetDimensions may contain special values (e.g. -1). reshapePrepare() is an AndroidNN provided utility
+ // function that resolves these values into a fully specified tensor shape.
+ if (!reshapePrepare(inputOperandShape, targetDimensions.data(), targetDimensions.size(), &requestedShape))
+ {
+ return Fail("%s: Failed to resolve the requested shape", __func__);
+ }
+
+ const Shape outputOperandShape = GetOperandShape(*outputOperand);
+ if (!SameShape(requestedShape, outputOperandShape))
+ {
+ return Fail("%s: Shape of output operand does not match resolved requested shape", __func__);
+ }
+
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Could not read input 0", __func__);
+ }
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsReshapeSupported,
+ m_Compute,
+ input.GetTensorInfo()))
+ {
+ return false;
+ }
+
+
+ armnn::ReshapeDescriptor reshapeDescriptor;
+ reshapeDescriptor.m_TargetShape = armnn::TensorShape(requestedShape.dimensions.size(),
+ requestedShape.dimensions.data());
+
+ armnn::IConnectableLayer* layer = m_Network->AddReshapeLayer(reshapeDescriptor);
+ assert(layer != nullptr);
+ input.Connect(layer->GetInputSlot(0));
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *layer);
+}
+
+bool ModelToINetworkConverter::ConvertResizeBilinear(const Operation& operation)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Could not read input 0", __func__);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ const armnn::TensorInfo swizzledInputInfo = armnnUtils::Permuted(inputInfo, NHWCToArmNN);
+ const armnn::TensorInfo swizzledOutputInfo = armnnUtils::Permuted(outputInfo, NHWCToArmNN);
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsResizeBilinearSupported,
+ m_Compute,
+ swizzledInputInfo))
+ {
+ return false;
+ }
+
+ armnn::ResizeBilinearDescriptor desc;
+
+ if ( !GetInputScalar(operation, 1, OperandType::INT32, desc.m_TargetHeight)
+ || !GetInputScalar(operation, 2, OperandType::INT32, desc.m_TargetWidth))
+ {
+ return Fail("%s: Operation has invalid inputs", __func__);
+ }
+
+ armnn::IConnectableLayer* layer = m_Network->AddResizeBilinearLayer(desc);
+ assert(layer != nullptr);
+ layer->GetOutputSlot(0).SetTensorInfo(swizzledOutputInfo);
+
+ armnn::IConnectableLayer& outSwizzleLayer = SwizzleInDeswizzleOut(*m_Network, input, *layer);
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, outSwizzleLayer);
+
+}
+
+bool ModelToINetworkConverter::ConvertToActivation(const Operation& operation,
+ const char* operationName,
+ const armnn::ActivationDescriptor& activationDesc)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Input 0 is invalid", operationName);
+ }
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsActivationSupported,
+ m_Compute,
+ input.GetTensorInfo(),
+ activationDesc))
+ {
+ return false;
+ }
+
+ armnn::IConnectableLayer* layer = m_Network->AddActivationLayer(activationDesc);
+ assert(layer != nullptr);
+ input.Connect(layer->GetInputSlot(0));
+
+ return SetupAndTrackLayerOutputSlot(operation, 0, *layer);
+}
+
+bool ModelToINetworkConverter::ConvertPooling2d(const Operation& operation,
+ const char* operationName,
+ armnn::PoolingAlgorithm poolType)
+{
+ LayerInputHandle input = ConvertToLayerInputHandle(operation, 0);
+ if (!input.IsValid())
+ {
+ return Fail("%s: Could not read input 0", operationName);
+ }
+
+ const Operand* output = GetOutputOperand(operation, 0);
+ if (!output)
+ {
+ return Fail("%s: Could not read output 0", __func__);
+ }
+
+ const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
+ const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+ const armnn::TensorInfo swizzledInputInfo = armnnUtils::Permuted(inputInfo, NHWCToArmNN);
+ const armnn::TensorInfo swizzledOutputInfo = armnnUtils::Permuted(outputInfo, NHWCToArmNN);
+
+ armnn::Pooling2dDescriptor desc;
+ desc.m_PoolType = poolType;
+ desc.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+
+ ActivationFn activation;
+
+ if (operation.inputs.size() == 7)
+ {
+ // one input, 6 parameters (padding, stridex, stridey, width, height, activation type)
+ android::nn::PaddingScheme scheme;
+
+ if ( !GetInputPaddingScheme(operation, 1, scheme)
+ || !GetInputScalar(operation, 2, OperandType::INT32, desc.m_StrideX)
+ || !GetInputScalar(operation, 3, OperandType::INT32, desc.m_StrideY)
+ || !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PoolWidth)
+ || !GetInputScalar(operation, 5, OperandType::INT32, desc.m_PoolHeight)
+ || !GetInputActivationFunction(operation, 6, activation))
+ {
+ return Fail("%s: Operation has invalid inputs", operationName);
+ }
+
+ const unsigned int inputWidth = swizzledInputInfo.GetShape()[3];
+ const unsigned int inputHeight = swizzledInputInfo.GetShape()[2];
+
+ CalcPadding(inputWidth, desc.m_PoolWidth, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, scheme);
+ CalcPadding(inputHeight, desc.m_PoolHeight, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, scheme);
+ }
+ else
+ {
+ // one input, 9 parameters (padding l r t b, stridex, stridey, width, height, activation type)
+ if ( !GetInputScalar(operation, 1, OperandType::INT32, desc.m_PadLeft)
+ || !GetInputScalar(operation, 2, OperandType::INT32, desc.m_PadRight)
+ || !GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadTop)
+ || !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadBottom)
+ || !GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideX)
+ || !GetInputScalar(operation, 6, OperandType::INT32, desc.m_StrideY)
+ || !GetInputScalar(operation, 7, OperandType::INT32, desc.m_PoolWidth)
+ || !GetInputScalar(operation, 8, OperandType::INT32, desc.m_PoolHeight)
+ || !GetInputActivationFunction(operation, 9, activation))
+ {
+ return Fail("%s: Operation has invalid inputs", operationName);
+ }
+ }
+
+ // ArmNN does not accept a pool size of 1, but the ArmNN driver is expected to cope.
+ // This is mapped to a trivial splitter instead.
+ armnn::IConnectableLayer* startLayer = nullptr;
+ if (desc.m_PoolWidth != 1 || desc.m_PoolHeight != 1)
+ {
+ if (!IsLayerSupported(__func__,
+ armnn::IsPooling2dSupported,
+ m_Compute,
+ swizzledInputInfo,
+ swizzledOutputInfo,
+ desc))
+ {
+ return false;
+ }
+
+ startLayer = m_Network->AddPooling2dLayer(desc);
+ }
+ else
+ {
+ const unsigned int numDims = swizzledOutputInfo.GetNumDimensions();
+
+ armnn::ViewsDescriptor viewsDesc(1, numDims);
+
+ for (unsigned int i = 0; i < numDims; ++i)
+ {
+ viewsDesc.SetViewOriginCoord(0, i, 0);
+ viewsDesc.SetViewSize(0, i, swizzledOutputInfo.GetShape()[i]);
+ }
+
+ if (!IsLayerSupported(__func__,
+ armnn::IsSplitterSupported,
+ m_Compute,
+ swizzledInputInfo,
+ viewsDesc))
+ {
+ return false;
+ }
+
+ startLayer = m_Network->AddSplitterLayer(viewsDesc);
+ }
+
+ armnn::IConnectableLayer* endLayer = ProcessActivation(swizzledOutputInfo, activation, startLayer);
+
+ if (endLayer != nullptr)
+ {
+ armnn::IConnectableLayer& outSwizzleLayer = SwizzleInDeswizzleOut(*m_Network, input, *startLayer, *endLayer);
+ return SetupAndTrackLayerOutputSlot(operation, 0, outSwizzleLayer);
+ }
+ else
+ {
+ return Fail("%s: ProcessActivation failed", operationName);
+ }
+}
+
+const void* ModelToINetworkConverter::GetOperandValueReadOnlyAddress(const Operand& operand) const
+{
+ const void* valueStart = nullptr;
+
+ switch (operand.lifetime)
+ {
+ case OperandLifeTime::CONSTANT_COPY:
+ {
+ // Constant found in model.operandValues
+ valueStart = &m_Model.operandValues[operand.location.offset];
+ break;
+ }
+ case OperandLifeTime::CONSTANT_REFERENCE:
+ {
+ // Constant specified via a Memory object
+ valueStart = GetMemoryFromPool(operand.location, m_MemPools);
+ break;
+ }
+ default:
+ {
+ // Unsupported/invalid (e.g. can't get value of an input to the model)
+ Fail("%s: unsupported/invalid operand lifetime: %s",
+ __func__, toString(operand.lifetime).c_str());
+ valueStart = nullptr;
+ }
+ }
+
+ return valueStart;
+}
+
+const Operand* ModelToINetworkConverter::GetInputOperand(const Operation& operation, uint32_t inputIndex) const
+{
+ if (inputIndex >= operation.inputs.size())
+ {
+ Fail("%s: invalid input index: %i out of %i", __func__, inputIndex, operation.inputs.size());
+ return nullptr;
+ }
+
+ assert(operation.inputs[inputIndex] < m_Model.operands.size()); // Model should have been validated beforehand
+ return &m_Model.operands[operation.inputs[inputIndex]];
+}
+
+const Operand* ModelToINetworkConverter::GetOutputOperand(const Operation& operation, uint32_t outputIndex) const
+{
+ if (outputIndex >= operation.outputs.size())
+ {
+ Fail("%s: invalid output index: %i out of %i", __func__, outputIndex, operation.outputs.size());
+ return nullptr;
+ }
+
+ assert(operation.outputs[outputIndex] < m_Model.operands.size()); // Model should have been validated beforehand
+ return &m_Model.operands[operation.outputs[outputIndex]];
+}
+
+template<typename T>
+bool ModelToINetworkConverter::GetInputScalar(const Operation& operation, uint32_t inputIndex,
+ OperandType type, T& outValue) const
+{
+ const Operand* operand = GetInputOperand(operation, inputIndex);
+ if (!operand)
+ {
+ return Fail("%s: invalid input operand at index %i", __func__, inputIndex);
+ }
+
+ if (operand->type != type)
+ {
+ return Fail("%s: unexpected operand type: %s (should be %s)",
+ __func__, toString(operand->type).c_str(), toString(type).c_str());
+ }
+
+ if (operand->location.length != sizeof(T))
+ {
+ return Fail("%s: incorrect operand location length: %i (should be %i)",
+ __func__, operand->location.length, sizeof(T));
+ }
+
+ const void* valueAddress = GetOperandValueReadOnlyAddress(*operand);
+ if (!valueAddress)
+ {
+ return Fail("%s: failed to get address for operand", __func__);
+ }
+
+ outValue = *(static_cast<const T*>(valueAddress));
+ return true;
+}
+
+bool ModelToINetworkConverter::GetInputInt32(const Operation& operation, uint32_t inputIndex, int32_t& outValue) const
+{
+ return GetInputScalar(operation, inputIndex, OperandType::INT32, outValue);
+}
+
+bool ModelToINetworkConverter::GetInputFloat32(const Operation& operation, uint32_t inputIndex, float& outValue) const
+{
+ return GetInputScalar(operation, inputIndex, OperandType::FLOAT32, outValue);
+}
+
+bool ModelToINetworkConverter::GetInputActivationFunction(const Operation& operation,
+ uint32_t inputIndex,
+ ActivationFn& outActivationFunction) const
+{
+ int32_t activationFunctionAsInt;
+ if (!GetInputInt32(operation, inputIndex, activationFunctionAsInt))
+ {
+ return Fail("%s: failed to get activation input value", __func__);
+ }
+
+ outActivationFunction = static_cast<ActivationFn>(activationFunctionAsInt);
+ return true;
+}
+
+bool ModelToINetworkConverter::GetInputPaddingScheme(const Operation& operation,
+ uint32_t inputIndex,
+ android::nn::PaddingScheme& outPaddingScheme) const
+{
+ int32_t paddingSchemeAsInt;
+ if (!GetInputInt32(operation, inputIndex, paddingSchemeAsInt))
+ {
+ return Fail("%s: failed to get padding scheme input value", __func__);
+ }
+
+ outPaddingScheme = static_cast<android::nn::PaddingScheme>(paddingSchemeAsInt);
+ return true;
+}
+
+LayerInputHandle ModelToINetworkConverter::ConvertToLayerInputHandle(
+ const Operation& operation,
+ uint32_t inputIndex)
+{
+ const Operand* operand = GetInputOperand(operation, inputIndex);
+ if (!operand)
+ {
+ Fail("%s: failed to get input operand %i", __func__, inputIndex);
+ return LayerInputHandle();
+ }
+
+ if (!IsOperandTypeSupportedForTensors(operand->type))
+ {
+ Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand->type).c_str());
+ return LayerInputHandle();
+ }
+
+ armnn::TensorInfo operandTensorInfo = GetTensorInfoForOperand(*operand);
+
+ switch (operand->lifetime)
+ {
+ case OperandLifeTime::TEMPORARY_VARIABLE: // intentional fallthrough
+ case OperandLifeTime::MODEL_INPUT:
+ {
+ // The tensor is either an operand internal to the model, or a model input.
+ // It can be associated with an ArmNN output slot for an existing layer.
+
+ // m_OutputSlotForOperand[...] can be nullptr if the previous layer could not be converted
+ const uint32_t operandIndex = operation.inputs[inputIndex];
+ return LayerInputHandle(true, m_OutputSlotForOperand[operandIndex], operandTensorInfo);
+ break;
+ }
+ case OperandLifeTime::CONSTANT_COPY:
+ case OperandLifeTime::CONSTANT_REFERENCE:
+ {
+ // The tensor has an already known constant value, and can be converted into an ArmNN Constant layer.
+ ConstTensorPin tensorPin = ConvertOperandToConstTensorPin(*operand);
+ if (tensorPin.IsValid())
+ {
+ if (!IsLayerSupported(__func__,
+ armnn::IsConstantSupported,
+ m_Compute,
+ tensorPin.GetConstTensor().GetInfo()))
+ {
+ return LayerInputHandle();
+ }
+
+ armnn::IConnectableLayer* constantLayer = m_Network->AddConstantLayer(tensorPin.GetConstTensor());
+ armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0);
+ outputSlot.SetTensorInfo(tensorPin.GetConstTensor().GetInfo());
+
+ return LayerInputHandle(true, &outputSlot, operandTensorInfo);
+ }
+ else
+ {
+ Fail("%s: invalid operand tensor", __func__);
+ return LayerInputHandle();
+ }
+ break;
+ }
+ default:
+ {
+ // Unsupported lifetime for an input tensor
+ Fail("%s: unsupported lifetime for input tensor: %s",
+ __func__, toString(operand->lifetime).c_str());
+ return LayerInputHandle();
+ }
+ }
+}
+
+ConstTensorPin ModelToINetworkConverter::ConvertOperationInputToConstTensorPin(const Operation& operation,
+ uint32_t inputIndex, const armnn::PermutationVector& dimensionMappings,
+ const armnn::TensorShape* overrideTensorShape)
+{
+ const Operand* operand = GetInputOperand(operation, inputIndex);
+ if (!operand)
+ {
+ Fail("%s: failed to get input operand", __func__);
+ return ConstTensorPin();
+ }
+
+ return ConvertOperandToConstTensorPin(*operand, dimensionMappings, overrideTensorShape);
+}
+
+ConstTensorPin ModelToINetworkConverter::ConvertOperandToConstTensorPin(const Operand& operand,
+ const armnn::PermutationVector& dimensionMappings, const armnn::TensorShape* overrideTensorShape)
+{
+ if (!IsOperandTypeSupportedForTensors(operand.type))
+ {
+ Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand.type).c_str());
+ return ConstTensorPin();
+ }
+
+ if (operand.lifetime != OperandLifeTime::CONSTANT_COPY && operand.lifetime != OperandLifeTime::CONSTANT_REFERENCE)
+ {
+ Fail("%s: invalid operand lifetime: %s", __func__, toString(operand.lifetime).c_str());
+ return ConstTensorPin();
+ }
+
+ const void* const valueStart = GetOperandValueReadOnlyAddress(operand);
+ if (!valueStart)
+ {
+ Fail("%s: failed to get operand address", __func__);
+ return ConstTensorPin();
+ }
+
+ armnn::TensorInfo tensorInfo = GetTensorInfoForOperand(operand);
+ if (overrideTensorShape != nullptr)
+ {
+ tensorInfo.SetShape(*overrideTensorShape);
+ }
+ return ConstTensorPin(tensorInfo, valueStart, operand.location.length, dimensionMappings);
+}
+
+bool ModelToINetworkConverter::GetTensorInt32Values(const Operand& operand, std::vector<int32_t>& outValues) const
+{
+ if (operand.type != OperandType::TENSOR_INT32)
+ {
+ return Fail("%s: invalid operand type: %s", __func__, toString(operand.type).c_str());
+ }
+
+ const void* startAddress = GetOperandValueReadOnlyAddress(operand);
+ if (!startAddress)
+ {
+ return Fail("%s: failed to get operand address", __func__, operand.type);
+ }
+
+ // Check number of bytes is sensible
+ const uint32_t numBytes = operand.location.length;
+ if (numBytes % sizeof(int32_t) != 0)
+ {
+ return Fail("%s: invalid number of bytes: %i, expected to be a multiple of %i",
+ __func__, numBytes, sizeof(int32_t));
+ }
+
+ outValues.resize(numBytes / sizeof(int32_t));
+ memcpy(outValues.data(), startAddress, numBytes);
+ return true;
+}
+
+// Creates an ArmNN activation layer and connects it to the given layer, if the
+// passed in AndroidNN activation function requires so.
+// @return The end layer of the sequence of layers built for the given AndroidNN
+// activation function or nullptr if an error occurred (e.g. unsupported activation).
+// Note that the end layer matches the input layer if no activation is required
+// (the sequence of layers has length 1).
+armnn::IConnectableLayer* ModelToINetworkConverter::ProcessActivation(const armnn::TensorInfo& tensorInfo,
+ ActivationFn activation, armnn::IConnectableLayer* prevLayer)
+{
+ assert(prevLayer->GetNumOutputSlots() == 1);
+
+ prevLayer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
+
+ armnn::IConnectableLayer* activationLayer = prevLayer;
+
+ if (activation != ActivationFn::kActivationNone)
+ {
+ armnn::ActivationDescriptor activationDesc;
+ switch (activation)
+ {
+ case ActivationFn::kActivationRelu:
+ {
+ activationDesc.m_Function = armnn::ActivationFunction::ReLu;
+ break;
+ }
+ case ActivationFn::kActivationRelu1:
+ {
+ activationDesc.m_Function = armnn::ActivationFunction::BoundedReLu;
+ activationDesc.m_A = 1.0f;
+ activationDesc.m_B = -1.0f;
+ break;
+ }
+ case ActivationFn::kActivationRelu6:
+ {
+ activationDesc.m_Function = armnn::ActivationFunction::BoundedReLu;
+ activationDesc.m_A = 6.0f;
+ break;
+ }
+ case ActivationFn::kActivationSigmoid:
+ {
+ activationDesc.m_Function = armnn::ActivationFunction::Sigmoid;
+ break;
+ }
+ case ActivationFn::kActivationTanh:
+ {
+ activationDesc.m_Function = armnn::ActivationFunction::TanH;
+ activationDesc.m_A = 1.0f;
+ activationDesc.m_B = 1.0f;
+ break;
+ }
+ default:
+ {
+ Fail("%s: Invalid activation enum value %i", __func__, activation);
+ return nullptr;
+ }
+ }
+
+ if (!IsLayerSupported(__func__, armnn::IsActivationSupported, m_Compute,
+ prevLayer->GetOutputSlot(0).GetTensorInfo(), activationDesc))
+ {
+ return nullptr;
+ }
+
+ activationLayer = m_Network->AddActivationLayer(activationDesc);
+
+ prevLayer->GetOutputSlot(0).Connect(activationLayer->GetInputSlot(0));
+ activationLayer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
+ }
+
+ return activationLayer;
+}
+
+bool ModelToINetworkConverter::SetupAndTrackLayerOutputSlot(const Operation& operation, uint32_t outputIndex,
+ armnn::IConnectableLayer& layer)
+{
+ const Operand* outputOperand = GetOutputOperand(operation, outputIndex);
+
+ if ((outputOperand == nullptr) || (outputIndex >= layer.GetNumOutputSlots()))
+ {
+ return false;
+ }
+
+ armnn::IOutputSlot& outputSlot = layer.GetOutputSlot(outputIndex);
+
+ const uint32_t operandIndex = operation.outputs[outputIndex];
+ m_OutputSlotForOperand[operandIndex] = &outputSlot;
+
+ outputSlot.SetTensorInfo(GetTensorInfoForOperand(*outputOperand));
+
+ return true;
+}
+
+bool ModelToINetworkConverter::IsOperationSupported(uint32_t operationIndex) const
+{
+ std::map<uint32_t, bool>::const_iterator it = m_OperationSupported.find(operationIndex);
+ assert(it != m_OperationSupported.end());
+ return it->second;
+}
+
+
+} // armnn_driver \ No newline at end of file