aboutsummaryrefslogtreecommitdiff
path: root/tests/validation_old/ReferenceCPP.cpp
blob: cca89974853a90bf5ae11843621c4079bcec5b9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "ReferenceCPP.h"

#include "TensorFactory.h"
#include "TensorOperations.h"
#include "TensorVisitors.h"

#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/runtime/Tensor.h"
#include "utils/TypePrinter.h"

#include "tests/validation_old/boost_wrapper.h"

#include <algorithm>
#include <functional>
#include <memory>
#include <numeric>
#include <vector>

using namespace arm_compute::test::validation::tensor_visitors;

namespace arm_compute
{
namespace test
{
namespace validation
{
// Sobel 3x3
void ReferenceCPP::sobel_3x3(RawTensor &src, RawTensor &dst_x, RawTensor &dst_y, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst_x.data_type() != DataType::S16 || dst_y.data_type() != DataType::S16);
    Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<int16_t> dx(dst_x.shape(), dst_x.data_type(), dst_x.fixed_point_position(), reinterpret_cast<int16_t *>(dst_x.data()));
    Tensor<int16_t> dy(dst_y.shape(), dst_y.data_type(), dst_y.fixed_point_position(), reinterpret_cast<int16_t *>(dst_y.data()));
    tensor_operations::sobel_3x3(s, dx, dy, border_mode, constant_border_value);
}

// Sobel 5x5
void ReferenceCPP::sobel_5x5(RawTensor &src, RawTensor &dst_x, RawTensor &dst_y, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst_x.data_type() != DataType::S16 || dst_y.data_type() != DataType::S16);
    Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<int16_t> dx(dst_x.shape(), dst_x.data_type(), dst_x.fixed_point_position(), reinterpret_cast<int16_t *>(dst_x.data()));
    Tensor<int16_t> dy(dst_y.shape(), dst_y.data_type(), dst_y.fixed_point_position(), reinterpret_cast<int16_t *>(dst_y.data()));
    tensor_operations::sobel_5x5(s, dx, dy, border_mode, constant_border_value);
}

// Harris corners
void ReferenceCPP::harris_corners(RawTensor &src, RawTensor &Gx, RawTensor &Gy, const RawTensor &candidates, const RawTensor &non_maxima, float threshold, float min_dist, float sensitivity,
                                  int32_t gradient_size, int32_t block_size, KeyPointArray &corners, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || (Gx.data_type() != DataType::S16 && Gx.data_type() != DataType::S32) || (Gy.data_type() != DataType::S16 && Gy.data_type() != DataType::S32)
                         || candidates.data_type() != DataType::F32 || non_maxima.data_type() != DataType::F32);

    Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<float>   c(candidates.shape(), candidates.data_type(), candidates.fixed_point_position(), const_cast<float *>(reinterpret_cast<const float *>(candidates.data())));  // NOLINT
    Tensor<float>   nm(non_maxima.shape(), non_maxima.data_type(), non_maxima.fixed_point_position(), const_cast<float *>(reinterpret_cast<const float *>(non_maxima.data()))); // NOLINT

    if(gradient_size == 7)
    {
        Tensor<int32_t> gx(Gx.shape(), Gx.data_type(), Gx.fixed_point_position(), reinterpret_cast<int32_t *>(Gx.data()));
        Tensor<int32_t> gy(Gy.shape(), Gy.data_type(), Gy.fixed_point_position(), reinterpret_cast<int32_t *>(Gy.data()));
        tensor_operations::harris_corners(s, gx, gy, c, nm, threshold, min_dist, sensitivity, gradient_size, block_size, corners, border_mode, constant_border_value);
    }
    else
    {
        Tensor<int16_t> gx(Gx.shape(), Gx.data_type(), Gx.fixed_point_position(), reinterpret_cast<int16_t *>(Gx.data()));
        Tensor<int16_t> gy(Gy.shape(), Gy.data_type(), Gy.fixed_point_position(), reinterpret_cast<int16_t *>(Gy.data()));
        tensor_operations::harris_corners(s, gx, gy, c, nm, threshold, min_dist, sensitivity, gradient_size, block_size, corners, border_mode, constant_border_value);
    }
}

// Minimum maximum location
void ReferenceCPP::min_max_location(const RawTensor &src, void *min, void *max, IArray<Coordinates2D> &min_loc, IArray<Coordinates2D> &max_loc, uint32_t &min_count, uint32_t &max_count)
{
    const TensorVariant s = TensorFactory::get_tensor(src);
    boost::apply_visitor(tensor_visitors::min_max_location_visitor(min, max, min_loc, max_loc, min_count, max_count), s);
}

// Absolute difference
void ReferenceCPP::absolute_difference(const RawTensor &src1, const RawTensor &src2, RawTensor &dst)
{
    const TensorVariant s1 = TensorFactory::get_tensor(src1);
    const TensorVariant s2 = TensorFactory::get_tensor(src2);
    TensorVariant       d  = TensorFactory::get_tensor(dst);
    boost::apply_visitor(absolute_difference_visitor(), s1, s2, d);
}

// Integral image
void ReferenceCPP::integral_image(const RawTensor &src, RawTensor &dst)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U32);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint32_t>      d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint32_t *>(dst.data()));
    tensor_operations::integral_image(s, d);
}

// Accumulate
void ReferenceCPP::accumulate(const RawTensor &src, RawTensor &dst)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::S16);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<int16_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<int16_t *>(dst.data()));
    tensor_operations::accumulate(s, d);
}

// Accumulate squared
void ReferenceCPP::accumulate_squared(const RawTensor &src, RawTensor &dst, uint32_t shift)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::S16);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<int16_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<int16_t *>(dst.data()));
    tensor_operations::accumulate_squared(s, d, shift);
}

// Accumulate weighted
void ReferenceCPP::accumulate_weighted(const RawTensor &src, RawTensor &dst, float alpha)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint8_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint8_t *>(dst.data()));
    tensor_operations::accumulate_weighted(s, d, alpha);
}

// Gaussian3x3 filter
void ReferenceCPP::gaussian3x3(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint8_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint8_t *>(dst.data()));
    tensor_operations::gaussian3x3(s, d, border_mode, constant_border_value);
}

// Gaussian5x5 filter
void ReferenceCPP::gaussian5x5(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint8_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint8_t *>(dst.data()));
    tensor_operations::gaussian5x5(s, d, border_mode, constant_border_value);
}

// Non linear filter
void ReferenceCPP::non_linear_filter(const RawTensor &src, RawTensor &dst, NonLinearFilterFunction function, unsigned int mask_size,
                                     MatrixPattern pattern, const uint8_t *mask, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint8_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint8_t *>(dst.data()));
    tensor_operations::non_linear_filter(s, d, function, mask_size, pattern, mask, border_mode, constant_border_value);
}

// Pixel-wise multiplication
void ReferenceCPP::pixel_wise_multiplication(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
{
    const TensorVariant s1 = TensorFactory::get_tensor(src1);
    const TensorVariant s2 = TensorFactory::get_tensor(src2);
    TensorVariant       d  = TensorFactory::get_tensor(dst);
    boost::apply_visitor(pixel_wise_multiplication_visitor(scale, convert_policy, rounding_policy), s1, s2, d);
}

// Fixed-point Pixel-wise multiplication
void ReferenceCPP::fixed_point_pixel_wise_multiplication(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
{
    const TensorVariant s1 = TensorFactory::get_tensor(src1);
    const TensorVariant s2 = TensorFactory::get_tensor(src2);
    TensorVariant       d  = TensorFactory::get_tensor(dst);
    boost::apply_visitor(tensor_visitors::fixed_point_pixel_wise_multiplication_visitor(s1, s2, scale, convert_policy, rounding_policy), d);
}

// Threshold
void ReferenceCPP::threshold(const RawTensor &src, RawTensor &dst, uint8_t threshold, uint8_t false_value, uint8_t true_value, ThresholdType type, uint8_t upper)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint8_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint8_t *>(dst.data()));
    tensor_operations::threshold(s, d, threshold, false_value, true_value, type, upper);
}

// Warp perspective
void ReferenceCPP::warp_perspective(const RawTensor &src, RawTensor &dst, RawTensor &valid_mask, const float *matrix, InterpolationPolicy policy, BorderMode border_mode, uint8_t constant_border_value)
{
    ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8);
    const Tensor<uint8_t> s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast<const uint8_t *>(src.data()));
    Tensor<uint8_t>       d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast<uint8_t *>(dst.data()));
    Tensor<uint8_t>       vmask(valid_mask.shape(), valid_mask.data_type(), valid_mask.fixed_point_position(), reinterpret_cast<uint8_t *>(valid_mask.data()));
    tensor_operations::warp_perspective(s, d, vmask, matrix, policy, border_mode, constant_border_value);
}

// ROI Pooling Layer
void ReferenceCPP::roi_pooling_layer(const RawTensor &src, RawTensor &dst, const std::vector<ROI> &rois, const ROIPoolingLayerInfo &pool_info)
{
    const TensorVariant s = TensorFactory::get_tensor(src);
    TensorVariant       d = TensorFactory::get_tensor(dst);
    boost::apply_visitor(tensor_visitors::roi_pooling_layer_visitor(s, rois, pool_info), d);
}

// Fixed point operation
void ReferenceCPP::fixed_point_operation(const RawTensor &src, RawTensor &dst, FixedPointOp op)
{
    const TensorVariant s = TensorFactory::get_tensor(src);
    TensorVariant       d = TensorFactory::get_tensor(dst);
    boost::apply_visitor(tensor_visitors::fixed_point_operation_visitor(s, op), d);
}

} // namespace validation
} // namespace test
} // namespace arm_compute