aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/ROIAlignLayer.cpp
blob: c32dce72e18ae6b504fdbd527d9ccb0a566f9bc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Copyright (c) 2018-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "ROIAlignLayer.h"

#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/validation/Helpers.h"

#include <algorithm>

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
/** Average pooling over an aligned window */
template <typename T>
inline T roi_align_1x1(const T *input, TensorShape input_shape,
                       float region_start_x,
                       float bin_size_x,
                       int   grid_size_x,
                       float region_end_x,
                       float region_start_y,
                       float bin_size_y,
                       int   grid_size_y,
                       float region_end_y,
                       int   pz)
{
    if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
    {
        return T(0);
    }
    else
    {
        float avg = 0;
        // Iterate through the aligned pooling region
        for(int iy = 0; iy < grid_size_y; ++iy)
        {
            for(int ix = 0; ix < grid_size_x; ++ix)
            {
                // Align the window in the middle of every bin
                float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y);
                float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x);

                // Interpolation in the [0,0] [0,1] [1,0] [1,1] square
                const int y_low  = y;
                const int x_low  = x;
                const int y_high = y_low + 1;
                const int x_high = x_low + 1;

                const float ly = y - y_low;
                const float lx = x - x_low;
                const float hy = 1. - ly;
                const float hx = 1. - lx;

                const float w1 = hy * hx;
                const float w2 = hy * lx;
                const float w3 = ly * hx;
                const float w4 = ly * lx;

                const size_t idx1  = coord2index(input_shape, Coordinates(x_low, y_low, pz));
                T            data1 = input[idx1];

                const size_t idx2  = coord2index(input_shape, Coordinates(x_high, y_low, pz));
                T            data2 = input[idx2];

                const size_t idx3  = coord2index(input_shape, Coordinates(x_low, y_high, pz));
                T            data3 = input[idx3];

                const size_t idx4  = coord2index(input_shape, Coordinates(x_high, y_high, pz));
                T            data4 = input[idx4];

                avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
            }
        }

        avg /= grid_size_x * grid_size_y;

        return T(avg);
    }
}

/** Clamp the value between lower and upper */
template <typename T>
T clamp(T value, T lower, T upper)
{
    return std::max(lower, std::min(value, upper));
}

SimpleTensor<float> convert_rois_from_asymmetric(SimpleTensor<uint16_t> rois)
{
    const UniformQuantizationInfo &quantization_info = rois.quantization_info().uniform();
    SimpleTensor<float>            dst{ rois.shape(), DataType::F32, 1, QuantizationInfo(), rois.data_layout() };

    for(int i = 0; i < rois.num_elements(); i += 5)
    {
        dst[i]     = static_cast<float>(rois[i]); // batch idx
        dst[i + 1] = dequantize_qasymm16(rois[i + 1], quantization_info);
        dst[i + 2] = dequantize_qasymm16(rois[i + 2], quantization_info);
        dst[i + 3] = dequantize_qasymm16(rois[i + 3], quantization_info);
        dst[i + 4] = dequantize_qasymm16(rois[i + 4], quantization_info);
    }
    return dst;
}
} // namespace
template <typename T, typename TRois>
SimpleTensor<T> roi_align_layer(const SimpleTensor<T> &src, const SimpleTensor<TRois> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
{
    ARM_COMPUTE_UNUSED(output_qinfo);

    const size_t values_per_roi = rois.shape()[0];
    const size_t num_rois       = rois.shape()[1];
    DataType     dst_data_type  = src.data_type();

    const auto *rois_ptr = static_cast<const TRois *>(rois.data());

    TensorShape     input_shape = src.shape();
    TensorShape     output_shape(pool_info.pooled_width(), pool_info.pooled_height(), src.shape()[2], num_rois);
    SimpleTensor<T> dst(output_shape, dst_data_type);

    // Iterate over every pixel of the input image
    for(size_t px = 0; px < pool_info.pooled_width(); ++px)
    {
        for(size_t py = 0; py < pool_info.pooled_height(); ++py)
        {
            for(size_t pw = 0; pw < num_rois; ++pw)
            {
                const unsigned int roi_batch = rois_ptr[values_per_roi * pw];
                const auto         x1        = float(rois_ptr[values_per_roi * pw + 1]);
                const auto         y1        = float(rois_ptr[values_per_roi * pw + 2]);
                const auto         x2        = float(rois_ptr[values_per_roi * pw + 3]);
                const auto         y2        = float(rois_ptr[values_per_roi * pw + 4]);

                const float roi_anchor_x = x1 * pool_info.spatial_scale();
                const float roi_anchor_y = y1 * pool_info.spatial_scale();
                const float roi_dims_x   = std::max((x2 - x1) * pool_info.spatial_scale(), 1.0f);
                const float roi_dims_y   = std::max((y2 - y1) * pool_info.spatial_scale(), 1.0f);

                float bin_size_x     = roi_dims_x / pool_info.pooled_width();
                float bin_size_y     = roi_dims_y / pool_info.pooled_height();
                float region_start_x = px * bin_size_x + roi_anchor_x;
                float region_start_y = py * bin_size_y + roi_anchor_y;
                float region_end_x   = (px + 1) * bin_size_x + roi_anchor_x;
                float region_end_y   = (py + 1) * bin_size_y + roi_anchor_y;

                region_start_x = clamp(region_start_x, 0.0f, float(input_shape[0]));
                region_start_y = clamp(region_start_y, 0.0f, float(input_shape[1]));
                region_end_x   = clamp(region_end_x, 0.0f, float(input_shape[0]));
                region_end_y   = clamp(region_end_y, 0.0f, float(input_shape[1]));

                const int roi_bin_grid_x = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_x));
                const int roi_bin_grid_y = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_y));

                // Move input and output pointer across the fourth dimension
                const size_t input_stride_w  = input_shape[0] * input_shape[1] * input_shape[2];
                const size_t output_stride_w = output_shape[0] * output_shape[1] * output_shape[2];
                const T     *input_ptr       = src.data() + roi_batch * input_stride_w;
                T           *output_ptr      = dst.data() + px + py * output_shape[0] + pw * output_stride_w;

                for(int pz = 0; pz < int(input_shape[2]); ++pz)
                {
                    // For every pixel pool over an aligned region
                    *(output_ptr + pz * output_shape[0] * output_shape[1]) = roi_align_1x1(input_ptr, input_shape,
                                                                                           region_start_x,
                                                                                           bin_size_x,
                                                                                           roi_bin_grid_x,
                                                                                           region_end_x,
                                                                                           region_start_y,
                                                                                           bin_size_y,
                                                                                           roi_bin_grid_y,
                                                                                           region_end_y, pz);
                }
            }
        }
    }
    return dst;
}

template SimpleTensor<float> roi_align_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo);
template SimpleTensor<half> roi_align_layer(const SimpleTensor<half> &src, const SimpleTensor<half> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo);

template <>
SimpleTensor<uint8_t> roi_align_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
{
    SimpleTensor<float>   src_tmp  = convert_from_asymmetric(src);
    SimpleTensor<float>   rois_tmp = convert_rois_from_asymmetric(rois);
    SimpleTensor<float>   dst_tmp  = roi_align_layer<float, float>(src_tmp, rois_tmp, pool_info, output_qinfo);
    SimpleTensor<uint8_t> dst      = convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
    return dst;
}
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute