aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/DepthwiseConvolutionLayer.cpp
blob: b1d2b923f729cea655747c68339781f6c1904d26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "DepthwiseConvolutionLayer.h"

#include "ConvolutionLayer.h"
#include "Utils.h"

#include "tests/validation/Helpers.h"
#include "tests/validation/reference/Utils.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"

#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
/** Perform a depthwise convolution
 *
 * - Three dimensions tensors
 * - Third dimention is number of channels
 * - Depths of input tensor and filter are equals
 * - Padding, stride and output shape "match"
 *
 */
template <typename T, typename TB>
SimpleTensor<T> depthwise_convolution(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &biases, const TensorShape &dst_shape, const PadStrideInfo &conv_info,
                                      unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
    ARM_COMPUTE_UNUSED(out_quant_info);

    SimpleTensor<T> dst{ dst_shape, src.data_type(), 1 };

    // Compute reference
    const int filter_width  = weights.shape().x();
    const int filter_height = weights.shape().y();
    const int filter_plane  = filter_width * filter_height;
    const int input_width   = src.shape().x();
    const int input_height  = src.shape().y();
    const int input_depth   = src.shape().z();
    const int num_batches   = src.shape().total_size() / (input_width * input_height * input_depth);

    const int pad_left   = conv_info.pad_left();
    const int pad_top    = conv_info.pad_top();
    const int pad_right  = conv_info.pad_right();
    const int pad_bottom = conv_info.pad_bottom();

    const float patch_width  = (filter_width + (dilation.x() - 1) * (filter_width - 1));
    const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));

    const int patch_half_width_floor  = patch_width / 2;
    const int patch_half_height_floor = patch_height / 2;

    const auto patch_half_width_ceil  = static_cast<int>(std::ceil(patch_width / 2));
    const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));

    const int minimum_x = -pad_left + patch_half_width_floor;
    const int minimum_y = -pad_top + patch_half_height_floor;
    const int maximum_x = input_width + pad_left + pad_right - static_cast<int>(patch_width);
    const int maximum_y = input_height + pad_top + pad_bottom - static_cast<int>(patch_height);

    const T border_value(0);

    int out_pos = 0;
    for(int r = 0; r < num_batches; ++r)
    {
        for(int z = 0; z < input_depth; ++z)
        {
            for(unsigned int m = 0; m < depth_multiplier; ++m)
            {
                const int out_z = z * depth_multiplier + m;

                for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
                {
                    for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
                    {
                        Coordinates coords(static_cast<int>(x), static_cast<int>(y), static_cast<int>(z), static_cast<int>(r));
                        size_t      filter_offset = filter_plane * out_z;

                        T val(0);
                        for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
                        {
                            for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
                            {
                                coords.set(0, i);
                                coords.set(1, j);
                                val += *(weights.data() + filter_offset) * tensor_elem_at(src, coords, BorderMode::CONSTANT, border_value);
                                ++filter_offset;
                            }
                        }

                        dst[out_pos++] = saturate_cast<T>(val + *static_cast<const TB *>(biases(Coordinates(out_z))));
                    }
                }
            }
        }
    }

    return dst;
}

template <>
SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
                                            const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
    // if no explicit quantization has been set you the same as src
    const QuantizationInfo &dst_qinfo = out_quant_info.uniform().empty() ? src.quantization_info() : out_quant_info;
    SimpleTensor<uint8_t>   dst{ dst_shape, src.data_type(), 1, dst_qinfo };

    // Create reference
    const int   input_offset   = -src.quantization_info().uniform().offset;
    const float input_scale    = src.quantization_info().uniform().scale;
    const int   weights_offset = -weights.quantization_info().uniform().offset;
    const float weights_scale  = weights.quantization_info().uniform().scale;
    const int   output_offset  = dst_qinfo.uniform().offset;
    const float output_scale   = dst_qinfo.uniform().scale;

    int         output_multiplier = 0;
    int         output_shift      = 0;
    const float multiplier        = input_scale * weights_scale / output_scale;
    arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);

    // Compute reference
    const int filter_width  = weights.shape().x();
    const int filter_height = weights.shape().y();
    const int filter_plane  = filter_width * filter_height;
    const int input_width   = src.shape().x();
    const int input_height  = src.shape().y();
    const int input_depth   = src.shape().z();
    const int num_batches   = src.shape().total_size() / (input_width * input_height * input_depth);

    const int pad_left   = conv_info.pad_left();
    const int pad_top    = conv_info.pad_top();
    const int pad_right  = conv_info.pad_right();
    const int pad_bottom = conv_info.pad_bottom();

    const float patch_width  = (filter_width + (dilation.x() - 1) * (filter_width - 1));
    const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));

    const int patch_half_width_floor  = patch_width / 2;
    const int patch_half_height_floor = patch_height / 2;

    const auto patch_half_width_ceil  = static_cast<int>(std::ceil(patch_width / 2));
    const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));

    const int minimum_x = -pad_left + patch_half_width_floor;
    const int minimum_y = -pad_top + patch_half_height_floor;
    const int maximum_x = input_width + pad_left + pad_right - static_cast<int>(patch_width);
    const int maximum_y = input_height + pad_top + pad_bottom - static_cast<int>(patch_height);

    int out_pos = 0;
    for(int r = 0; r < num_batches; ++r)
    {
        for(int z = 0; z < input_depth; ++z)
        {
            for(unsigned int m = 0; m < depth_multiplier; ++m)
            {
                const int     out_z    = z * depth_multiplier + m;
                const int32_t bias_val = *static_cast<const int32_t *>(biases(Coordinates(out_z)));

                for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
                {
                    for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
                    {
                        Coordinates coords(x, y, z, r);
                        int         filter_offset = filter_plane * out_z;

                        int32_t val = 0;
                        for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
                        {
                            for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
                            {
                                coords.set(0, i);
                                coords.set(1, j);
                                const auto    in_val = tensor_elem_at<uint8_t>(src, coords, BorderMode::CONSTANT, -input_offset);
                                const uint8_t w_val  = *(weights.data() + filter_offset);
                                val += (in_val + input_offset) * (w_val + weights_offset);
                                ++filter_offset;
                            }
                        }
                        val += bias_val;
                        val = asymm_rounding_divide_by_pow2(asymm_int_mult(val, output_multiplier), output_shift);
                        val += output_offset;
                        val = std::max<int32_t>(val, 0);
                        val = std::min<int32_t>(val, 255);

                        // Store the result
                        dst[out_pos++] = val;
                    }
                }
            }
        }
    }

    return dst;
}

template SimpleTensor<float> depthwise_convolution(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &biases, const TensorShape &dst_shape,
                                                   const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info);

template SimpleTensor<half> depthwise_convolution(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &biases, const TensorShape &dst_shape,
                                                  const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute