aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/Conv3D.cpp
blob: e4010a507a6e039f5f79b08aa20cde652f29c2a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 * Copyright (c) 2021, 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "Conv3D.h"

#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "support/AclRequires.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"

// Source/Destination Tensor shape indices (N D H W C)
constexpr unsigned int batch_dim   = 4u;
constexpr unsigned int depth_dim   = 3u;
constexpr unsigned int height_dim  = 2u;
constexpr unsigned int width_dim   = 1u;
constexpr unsigned int channel_dim = 0u;

// Weight tensor shape indices (D H W Cin Cout)
constexpr unsigned int weights_depth_dim  = 4u;
constexpr unsigned int weights_height_dim = 3u;
constexpr unsigned int weights_width_dim  = 2u;
constexpr unsigned int weights_CHin_dim   = 1u;
constexpr unsigned int weights_CHout_dim  = 0u;

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
inline bool is_valid_pixel(int i, int min, int max)
{
    return (i >= min && i < max);
}

// Evaluate the weights against an element in a given tensor.
template < typename T, typename TB, typename std::enable_if < validation::is_floating_point<T>::value &&validation::is_floating_point<TB>::value, int >::type = 0 >
T calculate_conv3d(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, const Size3D &dilation, int batch,
                   int z_start, int y_start, int x_start, int ch_out, UniformQuantizationInfo oq_info)
{
    ARM_COMPUTE_UNUSED(oq_info);

    const unsigned int weights_width  = weights.shape()[weights_width_dim];
    const unsigned int weights_height = weights.shape()[weights_height_dim];
    const unsigned int weights_depth  = weights.shape()[weights_depth_dim];

    const unsigned int src_channels = src.shape()[channel_dim];
    const unsigned int src_width    = src.shape()[width_dim];
    const unsigned int src_height   = src.shape()[height_dim];
    const unsigned int src_depth    = src.shape()[depth_dim];

    T total(0);
    for(unsigned int weight_d = 0; weight_d < weights_depth; ++weight_d)
    {
        const int idx_z = z_start + dilation.depth * weight_d;
        for(unsigned int weight_y = 0; weight_y < weights_height; ++weight_y)
        {
            const int idx_y = y_start + dilation.height * weight_y;
            for(unsigned int weight_x = 0; weight_x < weights_width; ++weight_x)
            {
                const int idx_x = x_start + dilation.width * weight_x;

                //Check if the point is within padding
                const bool is_x_valid       = is_valid_pixel(idx_x, 0, src_width);
                const bool is_y_valid       = is_valid_pixel(idx_y, 0, src_height);
                const bool is_z_valid       = is_valid_pixel(idx_z, 0, src_depth);
                const bool is_invalid_pixel = !(is_x_valid && is_y_valid && is_z_valid);
                if(is_invalid_pixel)
                {
                    continue;
                }

                for(unsigned int ch_in = 0; ch_in < src_channels; ++ch_in)
                {
                    const T *in_ptr = src.data();
                    const T *w_ptr  = weights.data();

                    const int in_offset     = coord2index(src.shape(), Coordinates{ ch_in, idx_x, idx_y, idx_z, batch });
                    const int weight_offset = coord2index(weights.shape(), Coordinates{ ch_out, ch_in, weight_x, weight_y, weight_d });
                    T         input_value   = in_ptr[in_offset];
                    T         weight_value  = w_ptr[weight_offset];
                    total += (input_value * weight_value);
                }
            }
        }
    }

    const TB *b_ptr      = bias.data();
    TB        bias_value = b_ptr[ch_out];

    return total + bias_value;
}

template < typename T, typename TB, ARM_COMPUTE_REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
T calculate_conv3d(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, const Size3D &dilation, int batch,
                   int z_start, int y_start, int x_start, int ch_out, UniformQuantizationInfo oq_info)
{
    const unsigned int weights_width  = weights.shape()[weights_width_dim];
    const unsigned int weights_height = weights.shape()[weights_height_dim];
    const unsigned int weights_depth  = weights.shape()[weights_depth_dim];

    const unsigned int src_channels = src.shape()[channel_dim];
    const unsigned int src_width    = src.shape()[width_dim];
    const unsigned int src_height   = src.shape()[height_dim];
    const unsigned int src_depth    = src.shape()[depth_dim];

    const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
    const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();

    const int   input_offset   = -iq_info.offset;
    const float input_scale    = iq_info.scale;
    int         weights_offset = -wq_info.offset;
    float       weights_scale  = wq_info.scale;
    const int   output_offset  = oq_info.offset;
    const float output_scale   = oq_info.scale;

    int         output_multiplier = 0;
    int         output_shift      = 0;
    const float multiplier        = input_scale * weights_scale / output_scale;
    arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);

    int32_t total(0);
    for(unsigned int weight_d = 0; weight_d < weights_depth; ++weight_d)
    {
        const int idx_z = z_start + dilation.depth * weight_d;
        for(unsigned int weight_y = 0; weight_y < weights_height; ++weight_y)
        {
            const int idx_y = y_start + dilation.height * weight_y;
            for(unsigned int weight_x = 0; weight_x < weights_width; ++weight_x)
            {
                const int idx_x = x_start + dilation.width * weight_x;

                //Check if the point is within padding
                const bool is_x_valid       = is_valid_pixel(idx_x, 0, src_width);
                const bool is_y_valid       = is_valid_pixel(idx_y, 0, src_height);
                const bool is_z_valid       = is_valid_pixel(idx_z, 0, src_depth);
                const bool is_invalid_pixel = !(is_x_valid && is_y_valid && is_z_valid);
                if(is_invalid_pixel)
                {
                    continue;
                }

                for(unsigned int ch_in = 0; ch_in < src_channels; ++ch_in)
                {
                    const T *in_ptr = src.data();
                    const T *w_ptr  = weights.data();

                    const int in_offset     = coord2index(src.shape(), Coordinates{ ch_in, idx_x, idx_y, idx_z, batch });
                    const int weight_offset = coord2index(weights.shape(), Coordinates{ ch_out, ch_in, weight_x, weight_y, weight_d });
                    T         input_value   = in_ptr[in_offset];
                    T         weight_value  = w_ptr[weight_offset];
                    total += ((input_value + input_offset) * (weight_value + weights_offset));
                }
            }
        }
    }

    const TB *b_ptr      = bias.data();
    TB        bias_value = b_ptr[ch_out];

    total += bias_value;

    return validation::quantize_down_scale_by_fixedpoint(total, output_multiplier, output_shift, output_offset,
                                                         std::numeric_limits<T>::lowest(), std::numeric_limits<T>::max());
}
} // namespace

template <typename T, typename TB>
SimpleTensor<T> conv3d(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &dst, const Conv3dInfo &conv3d_info)
{
    // Compute reference
    const unsigned int batch_size     = src.shape()[batch_dim];
    const unsigned int dst_width      = dst.shape()[width_dim];
    const unsigned int dst_height     = dst.shape()[height_dim];
    const unsigned int dst_depth      = dst.shape()[depth_dim];
    const unsigned int src_channels   = src.shape()[channel_dim];
    const unsigned int weights_out_ch = weights.shape()[weights_CHout_dim];
    const unsigned int dst_channels   = dst.shape()[channel_dim];
    const size_t       pad_left       = conv3d_info.padding.left;
    const size_t       pad_top        = conv3d_info.padding.top;
    const size_t       pad_front      = conv3d_info.padding.front;
    const size_t       stride_x       = conv3d_info.stride.x();
    const size_t       stride_y       = conv3d_info.stride.y();
    const size_t       stride_z       = conv3d_info.stride.z();

    const TensorShape dst_shape = arm_compute::misc::shape_calculator::compute_conv3d_shape(src.shape(), weights.shape(), conv3d_info);

    ARM_COMPUTE_UNUSED(src_channels, weights_out_ch, dst_channels, dst_shape, weights_CHin_dim);
    // Number of batches of source and destination tensors must match.
    ARM_COMPUTE_ERROR_ON(src.shape()[batch_dim] != dst.shape()[batch_dim]);
    // Input channels in the source and weights must match.
    ARM_COMPUTE_ERROR_ON(src_channels != weights.shape()[weights_CHin_dim]);
    // Weight channels in the destination and weights must match.
    ARM_COMPUTE_ERROR_ON(weights_out_ch != dst_channels);
    // Bias must match the number of destination channels.
    ARM_COMPUTE_ERROR_ON(bias.shape()[0] != dst_channels);
    // Compare given dst tensor shape with expected shape.
    ARM_COMPUTE_ERROR_ON(dst.shape() != dst_shape);

    for(unsigned int batch = 0; batch < batch_size; ++batch)
    {
        for(unsigned int z_out = 0; z_out < dst_depth; ++z_out)
        {
            const int z_start = (z_out * stride_z) - pad_front;
            for(unsigned int y_out = 0; y_out < dst_height; ++y_out)
            {
                const int y_start = (y_out * stride_y) - pad_top;
                for(unsigned int x_out = 0; x_out < dst_width; ++x_out)
                {
                    const int x_start = (x_out * stride_x) - pad_left;
                    for(unsigned int ch_out = 0; ch_out < dst_channels; ++ch_out)
                    {
                        T *out_ptr = dst.data();

                        const int out_offset = coord2index(dst.shape(), Coordinates{ ch_out, x_out, y_out, z_out, batch });
                        out_ptr[out_offset]  = calculate_conv3d<T, TB>(src, weights, bias, conv3d_info.dilation, batch, z_start, y_start, x_start, ch_out, dst.quantization_info().uniform());
                    }
                }
            }
        }
    }
    return dst;
}

template SimpleTensor<float> conv3d(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &bias, SimpleTensor<float> &dst,
                                    const Conv3dInfo &conv3d_info);
template SimpleTensor<half> conv3d(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &bias, SimpleTensor<half> &dst,
                                   const Conv3dInfo &conv3d_info);
template SimpleTensor<uint8_t> conv3d(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &bias, SimpleTensor<uint8_t> &dst,
                                      const Conv3dInfo &conv3d_info);
template SimpleTensor<int8_t> conv3d(const SimpleTensor<int8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &bias, SimpleTensor<int8_t> &dst,
                                     const Conv3dInfo &conv3d_info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute