aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/DepthwiseConvolutionLayerFixture.h
blob: 6e2e3a384631ad64454841d1ba64a3fefdfdfa4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*
 * Copyright (c) 2017-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_TESTS_VALIDATION_FIXTURES_DEPTHWISECONVOLUTIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_DEPTHWISECONVOLUTIONLAYERFIXTURE_H

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/DepthwiseConvolutionLayer.h"

#include "utils/Utils.h"

#include <cstdint>
#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class DepthwiseConvolutionLayerValidationGenericFixture : public framework::Fixture
{
public:
    using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;

    void setup_quantization(TensorShape input_shape, TensorShape weights_shape, QuantizationInfo &input_q_info,
        QuantizationInfo &weights_q_info, DataType data_type)
    {
        ARM_COMPUTE_UNUSED(input_shape);
        const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
        const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());

        std::mt19937                           generator(library->seed() + _hash);
        std::uniform_real_distribution<float>  distribution_float(-5.0f, 3.0f);
        std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);

        const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]

        const int32_t offset_lhs = distribution_t(generator);
        const int32_t offset_rhs = distribution_t(generator);

        _input_quantization_info = QuantizationInfo(scale_lhs, offset_lhs);
        _weights_quantization_info = QuantizationInfo(scale_rhs, offset_rhs);

        QuantizationHint q_hint = suggest_conv_dst_q_info_and_bias(input_q_info, weights_q_info,
            weights_shape.y() /* heights */, weights_shape.x() /* width */, 1 /* channels */,
            data_type, 0.5f /* bias_fraction */);

        _output_quantization_info = q_hint.q_info;
        _min_bias = q_hint.bias_min;
        _max_bias = q_hint.bias_max;
    }

public:
    void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation,
               unsigned int depth_multiplier, DataType input_data_type, DataType weights_data_type,
               QuantizationInfo input_quantization_info, QuantizationInfo weights_quantization_info, QuantizationInfo output_quantization_info,
               DataLayout data_layout, ActivationLayerInfo act_info, bool mixed_layout = false, bool in_place = false, bool run_twice = false)
    {
        ARM_COMPUTE_ERROR_ON(mixed_layout && in_place);
        // This hash is used by random generators. There may be hash collisions but
        // this is intentional as it's a very easy way to make the the current
        // random generation process almost different for many test configurations,
        // which were using the same set of values before.
        _hash = in_shape[0] + in_shape[1] + in_shape[2] + in_shape[3] +
            kernel_size.width + kernel_size.height + dilation.x() +
            dilation.y() + pad_stride_info.pad_bottom() + pad_stride_info.pad_left() + pad_stride_info.pad_right() + pad_stride_info.pad_top();

        _mixed_layout              = mixed_layout;
        _input_shape               = in_shape;
        _input_data_type           = input_data_type;
        _weights_data_type         = weights_data_type;
        _data_layout               = data_layout;
        _pad_stride_info           = pad_stride_info;
        _act_info                  = act_info;
        _depth_multiplier          = depth_multiplier;
        _dilation                  = dilation;
        _in_place                  = in_place;
        _run_twice                 = run_twice;

        _bias_data_type = is_data_type_quantized(_input_data_type) ? DataType::S32 : _input_data_type;

        _weights_shape = TensorShape(kernel_size.width, kernel_size.height);

        const TensorInfo      in_info(_input_shape, 1, _input_data_type);
        const TensorInfo      we_info(_weights_shape, 1, _weights_data_type);
        const ConvolutionInfo info{ _pad_stride_info, _depth_multiplier, _act_info, _dilation };
        _output_shape = compute_depthwise_convolution_shape(in_info, we_info, info);

        _weights_shape.set(2, _output_shape.z());
        _biases_shape = TensorShape(_weights_shape[2]);

        _input_quantization_info = input_quantization_info;
        _weights_quantization_info = weights_quantization_info;
        _output_quantization_info = output_quantization_info;

        if(is_data_type_quantized(_input_data_type) && !is_data_type_quantized_symmetric(weights_data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
        {
            setup_quantization(in_shape, _weights_shape, _input_quantization_info, _weights_quantization_info, _input_data_type);
            _use_dynamic_output_quant = true;
        }
    }

    void configure_target()
    {
        TensorShape input_shape   = _input_shape;
        TensorShape weights_shape = _weights_shape;
        TensorShape output_shape  = _output_shape;

        if(_data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
            permute(output_shape, PermutationVector(2U, 0U, 1U));
        }

        // Create tensors
        _src                      = create_tensor<TensorType>(input_shape, _input_data_type, 1, _input_quantization_info, _data_layout);
        _weights                  = create_tensor<TensorType>(weights_shape, _weights_data_type, 1, _weights_quantization_info, _data_layout);
        if(_run_twice) {
            _weights.info()->set_are_values_constant(false);
        }
        _biases                   = create_tensor<TensorType>(_biases_shape, _bias_data_type, 1, _input_quantization_info, _data_layout);
        TensorType *target_to_use = nullptr;
        if(!_in_place)
        {
            _target       = create_tensor<TensorType>(output_shape, _input_data_type, 1, _output_quantization_info, _data_layout);
            target_to_use = &_target;
        }

        add_padding_x({ &_src, &_biases }, _data_layout);
        add_padding_x({ &_weights }, _data_layout, true);
        if(!_in_place)
        {
            add_padding_x({ &_target }, _data_layout);
        }

        // Create Depthwise Convolution configure function
        _dwc.configure(&_src, &_weights, &_biases, target_to_use, _pad_stride_info, _depth_multiplier, _act_info, _dilation);

        ARM_COMPUTE_ASSERT(_src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_biases.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_target.info()->is_resizable());
    }

    void allocate_and_run_target()
    {
        // Allocate tensors
        _src.allocator()->allocate();
        _weights.allocator()->allocate();
        _biases.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!_src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_biases.info()->is_resizable());

        if(!_in_place)
        {
            _target.allocator()->allocate();
            ARM_COMPUTE_ASSERT(!_target.info()->is_resizable());
        }

        // Fill tensors
        fill(AccessorType(_src), 0 + _hash);
        fill(AccessorType(_weights), 1 + _hash);
        fill(AccessorType(_biases), 2 + _hash);

        // Run with variable input
        if(_run_twice) {
            _dwc.run();

            // Fill tensors with a new seed
            fill(AccessorType(_src), 3 + _hash);
            fill(AccessorType(_weights), 4 + _hash);
            fill(AccessorType(_biases), 5 + _hash);
        }

        if(_mixed_layout)
        {
            mix_layout(_dwc, _src, _target);
        }
        else
        {
            // Compute function
            _dwc.run();
        }
    }

    void compute_reference()
    {
        SimpleTensor<T>     src{ _input_shape, _input_data_type, 1, _input_quantization_info };
        SimpleTensor<TW>    weights{ _weights_shape, _weights_data_type, 1, _weights_quantization_info };
        SimpleTensor<TBias> biases{ _biases_shape, _bias_data_type, 1, _input_quantization_info };

        fill(src, 0 + _hash);
        fill(weights, 1 + _hash);
        fill(biases, 2 + _hash);

        if(_run_twice) {
            SimpleTensor<T> depth_out = reference::depthwise_convolution(src, weights, biases, _output_shape, _pad_stride_info, _depth_multiplier, _dilation, _output_quantization_info);
            if(_act_info.enabled()) {
                reference::activation_layer<T>(depth_out, _act_info);
            }

            fill(src, 3 + _hash);
            fill(weights, 4 + _hash);
            fill(biases, 5 + _hash);
        }

        SimpleTensor<T> depth_out = reference::depthwise_convolution(src, weights, biases, _output_shape, _pad_stride_info, _depth_multiplier, _dilation, _output_quantization_info);
        _reference                = (_act_info.enabled()) ? reference::activation_layer<T>(depth_out, _act_info) : depth_out;
    }

protected:
    void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
    {
        ARM_COMPUTE_ERROR_ON(_in_place);
        // Test Multi DataLayout graph cases, when the data layout changes after configure
        src.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        dst.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);

        // Compute Convolution function
        layer.run();

        // Reinstating original data layout for the test suite to properly check the values
        src.info()->set_data_layout(_data_layout);
        dst.info()->set_data_layout(_data_layout);
    }

    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::QASYMM8:
            {
                if(_use_dynamic_output_quant)
                {
                    std::uniform_int_distribution<int32_t> distribution(0, 255);
                    library->fill(tensor, distribution, i);
                }
                else
                {
                    // Legacy initialization in case the output quantization info can't be reliably estimated
                    std::pair<int, int>                     bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                    std::uniform_int_distribution<uint32_t> distribution(bounds.first, bounds.second);
                    library->fill(tensor, distribution, i);
                }
                break;
            }
            case DataType::QASYMM8_SIGNED:
            {
                if(_use_dynamic_output_quant)
                {
                    std::uniform_int_distribution<int32_t> distribution(-128, 127);
                    library->fill(tensor, distribution, i);
                }
                else
                {
                    // Legacy initialization in case the output quantization info can't be reliably estimated
                    std::pair<int, int>                    bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                    std::uniform_int_distribution<int32_t> distribution(bounds.first, bounds.second);
                    library->fill(tensor, distribution, i);
                }
                break;
            }
            case DataType::QSYMM8_PER_CHANNEL:
            {
                int min_bound = 128;
                int max_bound = -127;
                for(size_t i = 0; i < _weights_quantization_info.scale().size(); i++)
                {
                    std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
                    if(bounds.first < min_bound)
                    {
                        min_bound = bounds.first;
                    }
                    if(bounds.second > max_bound)
                    {
                        max_bound = bounds.second;
                    }
                }
                std::uniform_int_distribution<int32_t> distribution(min_bound, max_bound);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::S32:
            {
                std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::BFLOAT16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};

    TensorType   _src{};
    TensorType   _weights{};
    TensorType   _biases{};
    FunctionType _dwc{};

    TensorShape         _input_shape{};
    TensorShape         _weights_shape{};
    TensorShape         _biases_shape{};
    TensorShape         _output_shape{};
    DataType            _input_data_type{};
    DataType            _weights_data_type{};
    DataType            _bias_data_type{};
    QuantizationInfo    _input_quantization_info{};
    QuantizationInfo    _weights_quantization_info{};
    QuantizationInfo    _output_quantization_info{};
    DataLayout          _data_layout{};
    PadStrideInfo       _pad_stride_info{};
    ActivationLayerInfo _act_info{};
    unsigned int        _depth_multiplier{};
    Size2D              _dilation{};
    bool                _mixed_layout{ false };
    bool                _in_place{ false };
    bool                _run_twice{ false };
    bool                _use_dynamic_output_quant{false};

    int32_t _hash{0};
    // Random initialization limits
    // Default values are previously handcrafted limits
    // that sould be used when we don't use dynamic quantization
    int32_t _min_bias{-100};
    int32_t _max_bias{100};
    int32_t _min_u8{0};
    int32_t _max_u8{50};
    int32_t _min_s8{-25};
    int32_t _max_s8{25};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false, bool in_place = false, bool run_twice = false>
class DepthwiseConvolutionLayerValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType data_type, DataLayout data_layout,
               ActivationLayerInfo act_info)
    {
        DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier,
                                                                                                               data_type, data_type, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(),
                                                                                                               data_layout, act_info, mixed_layout, in_place, run_twice);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DepthwiseConvolutionLayerNativeValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(size_t width, size_t height, size_t channel, size_t batch, Size2D kernel_size, size_t depth_multiplier, Size2D dilation, Size2D stride, bool padding_valid, DataType data_type,
               DataLayout data_layout)
    {
        _dilation         = dilation;
        _depth_multiplier = depth_multiplier;
        _data_type        = data_type;
        _data_layout      = data_layout;

        _input_shape   = TensorShape(width, height, channel, batch);
        _weights_shape = TensorShape(kernel_size.width, kernel_size.height, channel * _depth_multiplier);
        _biases_shape  = TensorShape(_weights_shape.z());

        if(padding_valid)
        {
            _conv_info = PadStrideInfo(stride.width, stride.height);
        }
        else
        {
            _conv_info = calculate_same_pad(_input_shape, _weights_shape, PadStrideInfo(stride.width, stride.height), DataLayout::NCHW, _dilation);
        }
    }

    void configure_target()
    {
        TensorShape input_shape   = _input_shape;
        TensorShape weights_shape = _weights_shape;

        if(_data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
        }

        // Create tensors
        _src     = create_tensor<TensorType>(input_shape, _data_type, 1, QuantizationInfo(), _data_layout);
        _weights = create_tensor<TensorType>(weights_shape, _data_type, 1, QuantizationInfo(), _data_layout);
        _biases  = create_tensor<TensorType>(_biases_shape, _data_type, 1, QuantizationInfo(), _data_layout);
        _target  = create_tensor<TensorType>(TensorShape(), _data_type, 1, QuantizationInfo(), _data_layout);

        add_padding_x({ &_src, &_biases, &_target }, _data_layout);
        add_padding_x({ &_weights }, _data_layout, true);

        // Create Depthwise Convolution configure function
        const ConvolutionInfo info
        {
            _conv_info, _depth_multiplier, ActivationLayerInfo(), _dilation
        };
        _dwc.configure(_src.info(), _weights.info(), _biases.info(), _target.info(), info);

        ARM_COMPUTE_ASSERT(_src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_biases.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_target.info()->is_resizable());
    }

    void allocate_and_run_target()
    {
        // Allocate tensors
        _src.allocator()->allocate();
        _weights.allocator()->allocate();
        _biases.allocator()->allocate();
        _target.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!_src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_biases.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_target.info()->is_resizable());

        // Fill tensors
        fill(AccessorType(_src), 0);
        fill(AccessorType(_weights), 1);
        fill(AccessorType(_biases), 2);

        arm_compute::ITensorPack pack;
        pack.add_const_tensor(arm_compute::TensorType::ACL_SRC_0, &_src);
        pack.add_const_tensor(arm_compute::TensorType::ACL_SRC_1, &_weights);
        pack.add_const_tensor(arm_compute::TensorType::ACL_SRC_2, &_biases);
        pack.add_tensor(arm_compute::TensorType::ACL_DST, &_target);

        // Compute function
        _dwc.run(pack);
    }

    void compute_reference()
    {
        SimpleTensor<T> src{ _input_shape, _data_type };
        SimpleTensor<T> weights{ _weights_shape, _data_type };
        SimpleTensor<T> biases{ _biases_shape, _data_type };

        fill(src, 0);
        fill(weights, 1);
        fill(biases, 2);

        const ConvolutionInfo info{ _conv_info, _depth_multiplier, ActivationLayerInfo(), _dilation };
        const TensorShape     dst_shape = compute_depthwise_convolution_shape(TensorInfo(_input_shape, 1, _data_type), TensorInfo(_weights_shape, 1, _data_type), info);
        _reference                      = reference::depthwise_convolution(src, weights, biases, dst_shape, _conv_info, _depth_multiplier, _dilation);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};

    TensorType   _src{};
    TensorType   _weights{};
    TensorType   _biases{};
    FunctionType _dwc{};

    TensorShape   _input_shape{};
    TensorShape   _weights_shape{};
    TensorShape   _biases_shape{};
    DataType      _data_type{};
    DataLayout    _data_layout{};
    PadStrideInfo _conv_info{};
    Size2D        _dilation{};
    unsigned int  _depth_multiplier{};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool in_place = false>
class DepthwiseConvolutionLayerNativeConfigurableValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(size_t width, size_t height, size_t channel, size_t batch, Size2D kernel_size, size_t depth_multiplier, Size2D dilation, Size2D stride, bool padding_valid, DataType data_type,
               DataLayout data_layout, const ActivationLayerInfo &act_info, unsigned int n0, bool export_to_cl_image)
    {
        _dilation           = dilation;
        _depth_multiplier   = depth_multiplier;
        _data_type          = data_type;
        _data_layout        = data_layout;
        _act_info           = act_info;
        _n0                 = n0;
        _export_to_cl_image = export_to_cl_image;
        _in_place           = in_place;

        _input_shape   = TensorShape(width, height, channel, batch);
        _weights_shape = TensorShape(kernel_size.width, kernel_size.height, channel * _depth_multiplier);
        _biases_shape  = TensorShape(_weights_shape.z());

        if(padding_valid)
        {
            _conv_info = calculate_same_pad(_input_shape, _weights_shape, PadStrideInfo(stride.width, stride.height), DataLayout::NCHW, _dilation);
        }
        else
        {
            _conv_info = PadStrideInfo(stride.width, stride.height);
        }
    }

    void configure_target()
    {
#if defined(ARM_COMPUTE_OPENCL_ENABLED)
        if(_export_to_cl_image)
        {
            _validate_output &= image2d_from_buffer_supported(CLKernelLibrary::get().get_device());
            _validate_output &= (get_cl_image_pitch_alignment(CLKernelLibrary::get().get_device()) != 0);
        }
#endif // ARM_COMPUTE_OPENCL_ENABLED

        if(!_validate_output)
        {
            return;
        }

        TensorShape input_shape   = _input_shape;
        TensorShape weights_shape = _weights_shape;

        if(_data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
        }

        // Create tensors
        _src                      = create_tensor<TensorType>(input_shape, _data_type, 1, QuantizationInfo(), _data_layout);
        _weights                  = create_tensor<TensorType>(weights_shape, _data_type, 1, QuantizationInfo(), _data_layout);
        _biases                   = create_tensor<TensorType>(_biases_shape, _data_type, 1, QuantizationInfo(), _data_layout);
        TensorType *target_to_use = nullptr;
        if(!_in_place)
        {
            _target       = create_tensor<TensorType>(TensorShape(), _data_type, 1, QuantizationInfo(), _data_layout);
            target_to_use = &_target;
        }

        DWCComputeKernelInfo dwc_info;
        dwc_info.n0                         = _n0;
        dwc_info.m0                         = _conv_info.stride().first == 1 && _dilation.x() == 1 ? 8 : 1;
        dwc_info.export_input_to_cl_image   = false;
        dwc_info.export_weights_to_cl_image = _export_to_cl_image;

        const ConvolutionInfo conv_kernel_info
        {
            _conv_info, _depth_multiplier, _act_info, _dilation
        };

        add_padding_x({ &_src, &_biases, &_target }, _data_layout);
        add_padding_x({ &_weights }, _data_layout, _export_to_cl_image); // Don't add left padding if cl image will be used

        // Create Depthwise Convolution configure function
        _dwc.configure(&_src, &_weights, &_biases, target_to_use, dwc_info, conv_kernel_info);

        ARM_COMPUTE_ASSERT(_src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_biases.info()->is_resizable());
        ARM_COMPUTE_ASSERT(_target.info()->is_resizable());
    }

    void allocate_and_run_target()
    {
        if(!_validate_output)
        {
            return;
        }

        // Allocate tensors
        _src.allocator()->allocate();
        _weights.allocator()->allocate();
        _biases.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!_src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!_biases.info()->is_resizable());
        if(!_in_place)
        {
            _target.allocator()->allocate();
            ARM_COMPUTE_ASSERT(!_target.info()->is_resizable());
        }

        // Fill tensors
        fill(AccessorType(_src), 0);
        fill(AccessorType(_weights), 1);
        fill(AccessorType(_biases), 2);

        // Test Multi DataLayout graph cases, when the data layout changes after configure
        _src.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        if(!_in_place)
        {
            _target.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        }

        // Compute function
        _dwc.run();

        // Reinstating original data layout for the test suite to properly check the values
        if(!_in_place)
        {
            _target.info()->set_data_layout(_data_layout);
        }
    }

    void compute_reference()
    {
        if(!_validate_output)
        {
            return;
        }

        SimpleTensor<T> src{ _input_shape, _data_type };
        SimpleTensor<T> weights{ _weights_shape, _data_type };
        SimpleTensor<T> biases{ _biases_shape, _data_type };

        fill(src, 0);
        fill(weights, 1);
        fill(biases, 2);

        const ConvolutionInfo info{ _conv_info, _depth_multiplier, _act_info, _dilation };
        const TensorShape     dst_shape = compute_depthwise_convolution_shape(TensorInfo(_input_shape, 1, _data_type), TensorInfo(_weights_shape, 1, _data_type), info);
        _reference                      = reference::activation_layer(reference::depthwise_convolution(src, weights, biases, dst_shape, _conv_info, _depth_multiplier, _dilation), _act_info);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};

    TensorType   _src{};
    TensorType   _weights{};
    TensorType   _biases{};
    FunctionType _dwc{};

    TensorShape         _input_shape{};
    TensorShape         _weights_shape{};
    TensorShape         _biases_shape{};
    DataType            _data_type{};
    DataLayout          _data_layout{};
    PadStrideInfo       _conv_info{};
    ActivationLayerInfo _act_info{};
    Size2D              _dilation{};
    unsigned int        _depth_multiplier{};
    unsigned int        _n0{};
    bool                _export_to_cl_image{};
    bool                _validate_output{ true };
    bool                _in_place{ false };
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false, bool in_place = false>
class DepthwiseConvolutionLayerValidationQuantizedFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType data_type,
               QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, DataLayout data_layout, ActivationLayerInfo act_info)
    {
        DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier, data_type,
                                                                                                               data_type, input_quantization_info, input_quantization_info, output_quantization_info,
                                                                                                               data_layout, act_info, mixed_layout, in_place);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW, bool in_place = false>
class DepthwiseConvolutionLayerValidationQuantizedPerChannelFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
{
public:
    void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType input_data_type, DataType weights_data_type,
               QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, DataLayout data_layout, ActivationLayerInfo act_info)
    {
        const float out_scale = output_quantization_info.uniform().scale;
        const float in_scale  = input_quantization_info.uniform().scale;

        std::vector<float>                    weights_scales{};
        std::mt19937                          gen(library->seed());
        std::uniform_real_distribution<float> dis(0.01f, out_scale / in_scale);
        for(size_t i = 0; i < in_shape.z() * depth_multiplier; ++i)
        {
            weights_scales.push_back(dis(gen));
        }

        DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier,
                                                                                                                input_data_type, weights_data_type,
                                                                                                                input_quantization_info, QuantizationInfo(weights_scales), output_quantization_info,
                                                                                                                data_layout, act_info, false, in_place);
    }
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_DEPTHWISECONVOLUTIONLAYERFIXTURE_H