aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/ConvolutionLayerFixture.h
blob: c5cddc28db45edab2de5da29527dc61e9438f85a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/Utils.h"

#include <random>

namespace arm_compute
{
class NEConvolutionLayer;

namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationGenericFixture : public framework::Fixture
{
public:
    using TBias = typename std::conditional<std::is_same<typename std::decay<T>::type, uint8_t>::value, int32_t, T>::type;

public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights,
               DataType data_type, DataType weights_data_type, DataLayout data_layout, QuantizationInfo quantization_info, QuantizationInfo weight_quantization_info, ActivationLayerInfo act_info)
    {
        _data_type                = data_type;
        _weights_data_type        = weights_data_type;
        _is_quantized             = is_data_type_quantized_asymmetric(data_type);
        _bias_data_type           = _is_quantized ? DataType::S32 : data_type;
        _quantization_info        = quantization_info;
        _weight_quantization_info = weight_quantization_info;
        _data_layout              = data_layout;

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, dilation, act_info);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation, act_info);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::QASYMM8:
            {
                std::pair<int, int> bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                std::uniform_int_distribution<uint8_t> distribution(bounds.first, bounds.second);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::QSYMM8_PER_CHANNEL:
            {
                int min_bound = 128;
                int max_bound = -127;
                for(size_t i = 0; i < _weight_quantization_info.scale().size(); i++)
                {
                    std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
                    if(bounds.first < min_bound)
                    {
                        min_bound = bounds.first;
                    }
                    if(bounds.second > max_bound)
                    {
                        max_bound = bounds.second;
                    }
                }
                std::uniform_int_distribution<int8_t> distribution(min_bound, max_bound);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::S32:
            {
                std::uniform_int_distribution<int32_t> distribution(-100, 100);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            case DataType::F32:
            {
                std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
                              bool reshape_weights, const Size2D &dilation, const ActivationLayerInfo act_info)
    {
        ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);

        const unsigned int num_groups = input_shape[2] / weights_shape[2];

        if(_data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
            permute(output_shape, PermutationVector(2U, 0U, 1U));
        }

        const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
        const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

        WeightsInfo weights_info(!reshape_weights, weights_shape[idx_width], weights_shape[idx_height], weights_shape[3]);
        TensorShape reshaped_weights_shape(weights_shape);

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, _data_type, 1, _quantization_info, _data_layout);
        TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _weights_data_type, 1, _weight_quantization_info, _data_layout);
        TensorType bias    = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, _quantization_info, _data_layout);
        TensorType dst     = create_tensor<TensorType>(output_shape, _data_type, 1, _quantization_info, _data_layout);

        // Create and configure function
        FunctionType conv;
        conv.configure(&src, &weights, &bias, &dst, info, weights_info, dilation, act_info, num_groups);

        ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Fill tensors
        fill(AccessorType(src), 0);
        fill(AccessorType(weights), 1);
        fill(AccessorType(bias), 2);

        // Compute NEConvolutionLayer function
        conv.run();

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                                      const Size2D &dilation, const ActivationLayerInfo act_info)
    {
        ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);

        const unsigned int num_groups = input_shape[2] / weights_shape[2];

        // Create reference
        SimpleTensor<T>     src{ input_shape, _data_type, 1, _quantization_info };
        SimpleTensor<TW>    weights{ weights_shape, _weights_data_type, 1, _weight_quantization_info };
        SimpleTensor<TBias> bias{ bias_shape, _bias_data_type, 1, _quantization_info };

        // Fill reference
        fill(src, 0);
        fill(weights, 1);
        fill(bias, 2);

        return (act_info.enabled()) ? reference::activation_layer<T>(reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups),
                                                                     act_info) :
               reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups);
    }

    TensorType       _target{};
    SimpleTensor<T>  _reference{};
    DataType         _data_type{};
    DataType         _weights_data_type{};
    DataType         _bias_data_type{};
    DataLayout       _data_layout{};
    QuantizationInfo _quantization_info{};
    QuantizationInfo _weight_quantization_info{};
    bool             _is_quantized = false;
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, ActivationLayerInfo act_info)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout,
                                                                                                 QuantizationInfo(), QuantizationInfo(), act_info);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationQuantizedFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout, quantization_info, quantization_info, act_info);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationQuantizedPerChannelFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataType weights_data_type)
    {
        std::vector<float>               weights_scales{};
        std::mt19937                     gen(library->seed());
        std::uniform_real_distribution<> dis(0.01f, 1);
        for(size_t i = 0; i < output_shape[2]; ++i)
        {
            weights_scales.push_back(dis(gen));
        }
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation,
                                                                                                  reshape_weights, data_type, weights_data_type, data_layout,
                                                                                                  quantization_info, QuantizationInfo(weights_scales), act_info);
    }
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */