aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/Validation.h
blob: b6e7b8e82bd6ae7a03303a3878a3639d864f1da0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_TEST_VALIDATION_H__
#define __ARM_COMPUTE_TEST_VALIDATION_H__

#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/Types.h"
#include "tests/IAccessor.h"
#include "tests/SimpleTensor.h"
#include "tests/Types.h"
#include "tests/Utils.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Exceptions.h"
#include "utils/TypePrinter.h"

#include <iomanip>
#include <ios>
#include <vector>

namespace arm_compute
{
namespace test
{
namespace validation
{
/** Class reprensenting an absolute tolerance value. */
template <typename T>
class AbsoluteTolerance
{
public:
    /** Underlying type. */
    using value_type = T;

    /* Default constructor.
     *
     * Initialises the tolerance to 0.
     */
    AbsoluteTolerance() = default;

    /** Constructor.
     *
     * @param[in] value Absolute tolerance value.
     */
    explicit constexpr AbsoluteTolerance(T value)
        : _value{ value }
    {
    }

    /** Implicit conversion to the underlying type. */
    constexpr operator T() const
    {
        return _value;
    }

private:
    T _value{ std::numeric_limits<T>::epsilon() };
};

/** Class reprensenting a relative tolerance value. */
template <typename T>
class RelativeTolerance
{
public:
    /** Underlying type. */
    using value_type = T;

    /* Default constructor.
     *
     * Initialises the tolerance to 0.
     */
    RelativeTolerance() = default;

    /** Constructor.
     *
     * @param[in] value Relative tolerance value.
     */
    explicit constexpr RelativeTolerance(value_type value)
        : _value{ value }
    {
    }

    /** Implicit conversion to the underlying type. */
    constexpr operator value_type() const
    {
        return _value;
    }

private:
    value_type _value{ std::numeric_limits<T>::epsilon() };
};

/** Print AbsoluteTolerance type. */
template <typename T>
inline ::std::ostream &operator<<(::std::ostream &os, const AbsoluteTolerance<T> &tolerance)
{
    os << static_cast<typename AbsoluteTolerance<T>::value_type>(tolerance);

    return os;
}

/** Print RelativeTolerance type. */
template <typename T>
inline ::std::ostream &operator<<(::std::ostream &os, const RelativeTolerance<T> &tolerance)
{
    os << static_cast<typename RelativeTolerance<T>::value_type>(tolerance);

    return os;
}

template <typename T>
bool compare_dimensions(const Dimensions<T> &dimensions1, const Dimensions<T> &dimensions2)
{
    if(dimensions1.num_dimensions() != dimensions2.num_dimensions())
    {
        return false;
    }

    for(unsigned int i = 0; i < dimensions1.num_dimensions(); ++i)
    {
        if(dimensions1[i] != dimensions2[i])
        {
            return false;
        }
    }

    return true;
}

/** Validate valid regions.
 *
 * - Dimensionality has to be the same.
 * - Anchors have to match.
 * - Shapes have to match.
 */
void validate(const arm_compute::ValidRegion &region, const arm_compute::ValidRegion &reference);

/** Validate padding.
 *
 * Padding on all sides has to be the same.
 */
void validate(const arm_compute::PaddingSize &padding, const arm_compute::PaddingSize &reference);

/** Validate tensors.
 *
 * - Dimensionality has to be the same.
 * - All values have to match.
 *
 * @note: wrap_range allows cases where reference tensor rounds up to the wrapping point, causing it to wrap around to
 * zero while the test tensor stays at wrapping point to pass. This may permit true erroneous cases (difference between
 * reference tensor and test tensor is multiple of wrap_range), but such errors would be detected by
 * other test cases.
 */
template <typename T, typename U = AbsoluteTolerance<T>>
void validate(const IAccessor &tensor, const SimpleTensor<T> &reference, U tolerance_value = U(), float tolerance_number = 0.f);

/** Validate tensors with valid region.
 *
 * - Dimensionality has to be the same.
 * - All values have to match.
 *
 * @note: wrap_range allows cases where reference tensor rounds up to the wrapping point, causing it to wrap around to
 * zero while the test tensor stays at wrapping point to pass. This may permit true erroneous cases (difference between
 * reference tensor and test tensor is multiple of wrap_range), but such errors would be detected by
 * other test cases.
 */
template <typename T, typename U = AbsoluteTolerance<T>>
void validate(const IAccessor &tensor, const SimpleTensor<T> &reference, const ValidRegion &valid_region, U tolerance_value = U(), float tolerance_number = 0.f);

/** Validate tensors against constant value.
 *
 * - All values have to match.
 */
void validate(const IAccessor &tensor, const void *reference_value);

/** Validate border against a constant value.
 *
 * - All border values have to match the specified value if mode is CONSTANT.
 * - All border values have to be replicated if mode is REPLICATE.
 * - Nothing is validated for mode UNDEFINED.
 */
void validate(const IAccessor &tensor, BorderSize border_size, const BorderMode &border_mode, const void *border_value);

/** Validate classified labels against expected ones.
 *
 * - All values should match
 */
void validate(std::vector<unsigned int> classified_labels, std::vector<unsigned int> expected_labels);

/** Validate float value.
 *
 * - All values should match
 */
template <typename T, typename U = AbsoluteTolerance<T>>
void validate(T target, T reference, U tolerance = AbsoluteTolerance<T>());

template <typename T>
struct compare_base
{
    compare_base(typename T::value_type target, typename T::value_type reference, T tolerance = T(0))
        : _target{ target }, _reference{ reference }, _tolerance{ tolerance }
    {
    }

    typename T::value_type _target{};
    typename T::value_type _reference{};
    T                      _tolerance{};
};

template <typename T>
struct compare;

template <typename U>
struct compare<AbsoluteTolerance<U>> : public compare_base<AbsoluteTolerance<U>>
{
    using compare_base<AbsoluteTolerance<U>>::compare_base;

    operator bool() const
    {
        if(!std::isfinite(this->_target) || !std::isfinite(this->_reference))
        {
            return false;
        }
        else if(this->_target == this->_reference)
        {
            return true;
        }

        using comparison_type = typename std::conditional<std::is_integral<U>::value, int64_t, U>::type;

        const comparison_type abs_difference(std::abs(static_cast<comparison_type>(this->_target) - static_cast<comparison_type>(this->_reference)));

        return abs_difference <= static_cast<comparison_type>(this->_tolerance);
    }
};

template <typename U>
struct compare<RelativeTolerance<U>> : public compare_base<RelativeTolerance<U>>
{
    using compare_base<RelativeTolerance<U>>::compare_base;

    operator bool() const
    {
        if(!std::isfinite(this->_target) || !std::isfinite(this->_reference))
        {
            return false;
        }
        else if(this->_target == this->_reference)
        {
            return true;
        }

        const U epsilon = (std::is_same<half, typename std::remove_cv<U>::type>::value || (this->_reference == 0)) ? static_cast<U>(0.01) : static_cast<U>(1e-05);

        if(std::abs(static_cast<double>(this->_reference) - static_cast<double>(this->_target)) <= epsilon)
        {
            return true;
        }
        else
        {
            if(static_cast<double>(this->_reference) == 0.0f) // We have checked whether _reference and _target is closing. If _reference is 0 but not closed to _target, it should return false
            {
                return false;
            }

            const double relative_change = std::abs(static_cast<double>(this->_target) - static_cast<double>(this->_reference)) / this->_reference;

            return relative_change <= static_cast<U>(this->_tolerance);
        }
    }
};

template <typename T, typename U>
void validate(const IAccessor &tensor, const SimpleTensor<T> &reference, U tolerance_value, float tolerance_number)
{
    // Validate with valid region covering the entire shape
    validate(tensor, reference, shape_to_valid_region(tensor.shape()), tolerance_value, tolerance_number);
}

template <typename T, typename U>
void validate(const IAccessor &tensor, const SimpleTensor<T> &reference, const ValidRegion &valid_region, U tolerance_value, float tolerance_number)
{
    int64_t num_mismatches = 0;
    int64_t num_elements   = 0;

    ARM_COMPUTE_EXPECT_EQUAL(tensor.element_size(), reference.element_size(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT_EQUAL(tensor.data_type(), reference.data_type(), framework::LogLevel::ERRORS);

    if(reference.format() != Format::UNKNOWN)
    {
        ARM_COMPUTE_EXPECT_EQUAL(tensor.format(), reference.format(), framework::LogLevel::ERRORS);
    }

    ARM_COMPUTE_EXPECT_EQUAL(tensor.num_channels(), reference.num_channels(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(compare_dimensions(tensor.shape(), reference.shape()), framework::LogLevel::ERRORS);

    const int min_elements = std::min(tensor.num_elements(), reference.num_elements());
    const int min_channels = std::min(tensor.num_channels(), reference.num_channels());

    // Iterate over all elements within valid region, e.g. U8, S16, RGB888, ...
    for(int element_idx = 0; element_idx < min_elements; ++element_idx)
    {
        const Coordinates id = index2coord(reference.shape(), element_idx);

        if(is_in_valid_region(valid_region, id))
        {
            // Iterate over all channels within one element
            for(int c = 0; c < min_channels; ++c)
            {
                const T &target_value    = reinterpret_cast<const T *>(tensor(id))[c];
                const T &reference_value = reinterpret_cast<const T *>(reference(id))[c];

                if(!compare<U>(target_value, reference_value, tolerance_value))
                {
                    ARM_COMPUTE_TEST_INFO("id = " << id);
                    ARM_COMPUTE_TEST_INFO("channel = " << c);
                    ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << framework::make_printable(target_value));
                    ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << framework::make_printable(reference_value));
                    ARM_COMPUTE_TEST_INFO("tolerance = " << std::setprecision(5) << framework::make_printable(static_cast<typename U::value_type>(tolerance_value)));
                    framework::ARM_COMPUTE_PRINT_INFO();

                    ++num_mismatches;
                }

                ++num_elements;
            }
        }
    }

    if(num_elements > 0)
    {
        const int64_t absolute_tolerance_number = tolerance_number * num_elements;
        const float   percent_mismatches        = static_cast<float>(num_mismatches) / num_elements * 100.f;

        ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches
                              << "%) mismatched (maximum tolerated " << std::setprecision(2) << tolerance_number << "%)");
        ARM_COMPUTE_EXPECT(num_mismatches <= absolute_tolerance_number, framework::LogLevel::ERRORS);
    }
}

template <typename T, typename U>
void validate(T target, T reference, U tolerance)
{
    ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << framework::make_printable(reference));
    ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << framework::make_printable(target));
    ARM_COMPUTE_TEST_INFO("tolerance = " << std::setprecision(5) << framework::make_printable(static_cast<typename U::value_type>(tolerance)));
    ARM_COMPUTE_EXPECT((compare<U>(target, reference, tolerance)), framework::LogLevel::ERRORS);
}

template <typename T, typename U>
void validate_min_max_loc(const MinMaxLocationValues<T> &target, const MinMaxLocationValues<U> &reference)
{
    ARM_COMPUTE_EXPECT_EQUAL(target.min, reference.min, framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT_EQUAL(target.max, reference.max, framework::LogLevel::ERRORS);

    ARM_COMPUTE_EXPECT_EQUAL(target.min_loc.size(), reference.min_loc.size(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT_EQUAL(target.max_loc.size(), reference.max_loc.size(), framework::LogLevel::ERRORS);

    for(uint32_t i = 0; i < target.min_loc.size(); ++i)
    {
        const auto same_coords = std::find_if(reference.min_loc.begin(), reference.min_loc.end(), [&target, i](Coordinates2D coord)
        {
            return coord.x == target.min_loc.at(i).x && coord.y == target.min_loc.at(i).y;
        });

        ARM_COMPUTE_EXPECT(same_coords != reference.min_loc.end(), framework::LogLevel::ERRORS);
    }

    for(uint32_t i = 0; i < target.max_loc.size(); ++i)
    {
        const auto same_coords = std::find_if(reference.max_loc.begin(), reference.max_loc.end(), [&target, i](Coordinates2D coord)
        {
            return coord.x == target.max_loc.at(i).x && coord.y == target.max_loc.at(i).y;
        });

        ARM_COMPUTE_EXPECT(same_coords != reference.max_loc.end(), framework::LogLevel::ERRORS);
    }
}

} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TEST_REFERENCE_VALIDATION_H__ */