aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/UNIT/WindowIterator.cpp
blob: 4430299f5a2045ba767ad54ffeaaf8f136938099 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 * Copyright (c) 2017-2018 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/WindowIterator.h"
#include "tests/Utils.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "utils/TypePrinter.h"

#include <stdexcept>

using namespace arm_compute;
using namespace arm_compute::test;
using namespace arm_compute::test::validation;

TEST_SUITE(UNIT)
TEST_SUITE(WindowIterator)

template <typename Dim, typename... Dims>
Window create_window(Dim &&dim0, Dims &&... dims)
{
    Window win;
    const std::array < Dim, 1 + sizeof...(Dims) > dimensions{ { dim0, std::forward<Dims>(dims)... } };
    for(size_t i = 0; i < dimensions.size(); i++)
    {
        win.set(i, dimensions[i]);
    }
    return win;
}

template <typename T>
std::vector<T> create_vector(std::initializer_list<T> list_objs)
{
    std::vector<T> vec_objs;
    for(auto it : list_objs)
    {
        vec_objs.push_back(it);
    }
    return vec_objs;
}

DATA_TEST_CASE(WholeWindow, framework::DatasetMode::ALL, zip(framework::dataset::make("Window", { create_window(Window::Dimension(0, 1)),
                                                                                                  create_window(Window::Dimension(1, 5, 2), Window::Dimension(3, 5)),
                                                                                                  create_window(Window::Dimension(4, 16, 4), Window::Dimension(3, 13, 5), Window::Dimension(1, 3, 2))
                                                                                                }),
                                                             framework::dataset::make("Expected", { create_vector({ Coordinates(0, 0) }),
                                                                                                    create_vector({ Coordinates(1, 3), Coordinates(3, 3), Coordinates(1, 4), Coordinates(3, 4) }),
                                                                                                    create_vector({ Coordinates(4, 3, 1), Coordinates(8, 3, 1), Coordinates(12, 3, 1), Coordinates(4, 8, 1), Coordinates(8, 8, 1), Coordinates(12, 8, 1) })
                                                                                                  })),
               window, expected)
{
    unsigned int i            = 0;
    int          row_size     = 0;
    TensorShape  window_shape = window.shape();
    Coordinates  start_offset = index2coords(window_shape, 0);
    Coordinates  end_offset   = index2coords(window_shape, window.num_iterations_total() - 1);
    auto window_iterator      = create_window_iterator(window, start_offset, end_offset, [&](const Coordinates & id)
    {
        ARM_COMPUTE_EXPECT_EQUAL(row_size, (window[0].end() - window[0].start()), framework::LogLevel::ERRORS);
        ARM_COMPUTE_ASSERT(i < expected.size());
        Coordinates expected_coords = expected[i++];
        //Set number of dimensions to the maximum (To match the number of dimensions used by the id passed to the lambda function)
        expected_coords.set_num_dimensions(Coordinates::num_max_dimensions);
        ARM_COMPUTE_EXPECT_EQUAL(id, expected_coords, framework::LogLevel::ERRORS);
    });
    window_iterator.iterate_3D([&](int start, int end)
    {
        ARM_COMPUTE_EXPECT_EQUAL(window[0].start(), start, framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT_EQUAL(window[0].end(), end, framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(end > start, framework::LogLevel::ERRORS);
        row_size = end - start;
    });
    ARM_COMPUTE_EXPECT_EQUAL(i, expected.size(), framework::LogLevel::ERRORS);
}

DATA_TEST_CASE(PartialWindow2D, framework::DatasetMode::ALL, zip(zip(zip(combine(framework::dataset::make("Window",
                                                                                                          create_window(Window::Dimension(4, 20, 4), Window::Dimension(3, 32, 5), Window::Dimension(1, 2, 1))),
                                                                                 framework::dataset::make("Start", { 0, 1, 3, 2, 4 })),
                                                                         framework::dataset::make("End", { 0, 2, 5, 8, 7 })),
                                                                     framework::dataset::make("RowSize",
{
    create_vector({ 4 }),
    create_vector({ 8, 8 }),
    create_vector({ 4, 8, 8 }),
    create_vector({ 8, 8, 16, 16, 16, 16, 4 }),
    create_vector({ 16, 16, 16, 16 }),
})),
framework::dataset::make("Expected", { create_vector({ Coordinates(4, 3, 1) }), create_vector({ Coordinates(8, 3, 1), Coordinates(12, 3, 1) }), create_vector({ Coordinates(16, 3, 1), Coordinates(4, 8, 1), Coordinates(8, 8, 1) }), create_vector({ Coordinates(12, 3, 1), Coordinates(16, 3, 1), Coordinates(4, 8, 1), Coordinates(8, 8, 1), Coordinates(12, 8, 1), Coordinates(16, 8, 1), Coordinates(4, 13, 1) }), create_vector({ Coordinates(4, 8, 1), Coordinates(8, 8, 1), Coordinates(12, 8, 1), Coordinates(16, 8, 1) }) })),
window, start, end, expected_row_size, expected)
{
    unsigned int i            = 0;
    int          row_size     = 0;
    TensorShape  window_shape = window.shape();
    Coordinates  start_offset = index2coords(window_shape, start);
    Coordinates  end_offset   = index2coords(window_shape, end);
    auto window_iterator      = create_window_iterator(window, start_offset, end_offset, [&](const Coordinates & id)
    {
        ARM_COMPUTE_ASSERT(i < expected.size());
        ARM_COMPUTE_EXPECT_EQUAL(expected_row_size[i], row_size, framework::LogLevel::ERRORS);
        Coordinates expected_coords = expected[i++];
        //Set number of dimensions to the maximum (To match the number of dimensions used by the id passed to the lambda function)
        expected_coords.set_num_dimensions(Coordinates::num_max_dimensions);
        ARM_COMPUTE_EXPECT_EQUAL(id, expected_coords, framework::LogLevel::ERRORS);
    });
    window_iterator.iterate_3D([&](int start, int end)
    {
        ARM_COMPUTE_EXPECT(start >= window[0].start(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(end <= window[0].end(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(end > start, framework::LogLevel::ERRORS);
        row_size = end - start;
    });
    ARM_COMPUTE_EXPECT_EQUAL(i, expected.size(), framework::LogLevel::ERRORS);
}

TEST_SUITE_END()
TEST_SUITE_END()