aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/NEON/UNIT/TensorAllocator.cpp
blob: 21e4e71fad0e43c4367e530cb1158578c930209c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/TensorAllocator.h"

#include "arm_compute/core/utils/misc/MMappedFile.h"
#include "arm_compute/core/utils/misc/Utility.h"
#include "arm_compute/runtime/MemoryGroup.h"
#include "arm_compute/runtime/MemoryRegion.h"
#include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"

#include "support/MemorySupport.h"

#include "tests/Globals.h"
#include "tests/Utils.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/ActivationLayer.h"

#include <memory>
#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
TEST_SUITE(NEON)
TEST_SUITE(UNIT)
TEST_SUITE(TensorAllocator)

TEST_CASE(ImportMemory, framework::DatasetMode::ALL)
{
    // Init tensor info
    TensorInfo info(TensorShape(24U, 16U, 3U), 1, DataType::F32);

    // Allocate memory buffer
    const size_t total_size = info.total_size();
    auto         data       = support::cpp14::make_unique<uint8_t[]>(total_size);

    // Negative case : Import nullptr
    Tensor t1;
    t1.allocator()->init(info);
    ARM_COMPUTE_EXPECT(!bool(t1.allocator()->import_memory(nullptr)), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(t1.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Negative case : Import misaligned pointer
    Tensor       t2;
    const size_t required_alignment = 339;
    t2.allocator()->init(info, required_alignment);
    ARM_COMPUTE_EXPECT(!bool(t2.allocator()->import_memory(data.get())), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(t2.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Negative case : Import memory to a tensor that is memory managed
    Tensor      t3;
    MemoryGroup mg;
    t3.allocator()->set_associated_memory_group(&mg);
    ARM_COMPUTE_EXPECT(!bool(t3.allocator()->import_memory(data.get())), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(t3.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Positive case : Set raw pointer
    Tensor t4;
    t4.allocator()->init(info);
    ARM_COMPUTE_EXPECT(bool(t4.allocator()->import_memory(data.get())), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(!t4.info()->is_resizable(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(t4.buffer() == reinterpret_cast<uint8_t *>(data.get()), framework::LogLevel::ERRORS);
    t4.allocator()->free();
    ARM_COMPUTE_EXPECT(t4.info()->is_resizable(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(t4.buffer() == nullptr, framework::LogLevel::ERRORS);
}

TEST_CASE(ImportMemoryMalloc, framework::DatasetMode::ALL)
{
    const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
    const TensorShape         shape     = TensorShape(24U, 16U, 3U);
    const DataType            data_type = DataType::F32;

    // Create tensor
    const TensorInfo info(shape, 1, data_type);
    const size_t     required_alignment = 64;
    Tensor           tensor;
    tensor.allocator()->init(info, required_alignment);

    // Create and configure activation function
    NEActivationLayer act_func;
    act_func.configure(&tensor, nullptr, act_info);

    // Allocate and import tensor
    const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
    const size_t total_size_in_bytes = tensor.info()->total_size();
    size_t       space               = total_size_in_bytes + required_alignment;
    auto         raw_data            = support::cpp14::make_unique<uint8_t[]>(space);

    void *aligned_ptr = raw_data.get();
    support::cpp11::align(required_alignment, total_size_in_bytes, aligned_ptr, space);

    ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(aligned_ptr)), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Fill tensor
    std::uniform_real_distribution<float> distribution(-5.f, 5.f);
    std::mt19937                          gen(library->seed());
    auto                                 *typed_ptr = reinterpret_cast<float *>(aligned_ptr);
    for(unsigned int i = 0; i < total_size_in_elems; ++i)
    {
        typed_ptr[i] = distribution(gen);
    }

    // Execute function and sync
    act_func.run();

    // Validate result by checking that the input has no negative values
    for(unsigned int i = 0; i < total_size_in_elems; ++i)
    {
        ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
    }

    // Release resources
    tensor.allocator()->free();
    ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
}

TEST_CASE(ImportMemoryMallocPadded, framework::DatasetMode::ALL)
{
    // Create tensor
    Tensor tensor;
    tensor.allocator()->init(TensorInfo(TensorShape(24U, 16U, 3U), 1, DataType::F32));

    // Enforce tensor padding and validate that meta-data were updated
    // Note: Padding might be updated after the function configuration in case of increased padding requirements
    const PaddingSize enforced_padding(3U, 5U, 2U, 4U);
    tensor.info()->extend_padding(enforced_padding);
    validate(tensor.info()->padding(), enforced_padding);

    // Create and configure activation function
    NEActivationLayer act_func;
    act_func.configure(&tensor, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));

    // Allocate and import tensor
    const size_t total_size_in_bytes = tensor.info()->total_size();
    auto         raw_data            = support::cpp14::make_unique<uint8_t[]>(total_size_in_bytes);

    ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(raw_data.get())), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Fill tensor while accounting padding
    std::uniform_real_distribution<float> distribution(-5.f, 5.f);
    std::mt19937                          gen(library->seed());

    Window tensor_window;
    tensor_window.use_tensor_dimensions(tensor.info()->tensor_shape());
    Iterator tensor_it(&tensor, tensor_window);

    execute_window_loop(tensor_window, [&](const Coordinates &)
    {
        *reinterpret_cast<float *>(tensor_it.ptr()) = distribution(gen);
    },
    tensor_it);

    // Execute function and sync
    act_func.run();

    // Validate result by checking that the input has no negative values
    execute_window_loop(tensor_window, [&](const Coordinates &)
    {
        const float val = *reinterpret_cast<float *>(tensor_it.ptr());
        ARM_COMPUTE_EXPECT(val >= 0, framework::LogLevel::ERRORS);
    },
    tensor_it);

    // Release resources
    tensor.allocator()->free();
    ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
}

#if !defined(BARE_METAL)
TEST_CASE(ImportMemoryMappedFile, framework::DatasetMode::ALL)
{
    const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
    const TensorShape         shape     = TensorShape(24U, 16U, 3U);
    const DataType            data_type = DataType::F32;

    // Create tensor
    const TensorInfo info(shape, 1, data_type);
    Tensor           tensor;
    tensor.allocator()->init(info);

    // Create and configure activation function
    NEActivationLayer act_func;
    act_func.configure(&tensor, nullptr, act_info);

    // Get number of elements
    const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
    const size_t total_size_in_bytes = tensor.info()->total_size();

    // Create file
    std::ofstream output_file("test_mmap_import.bin", std::ios::binary | std::ios::out);
    output_file.seekp(total_size_in_bytes - 1);
    output_file.write("", 1);
    output_file.close();

    // Map file
    utils::mmap_io::MMappedFile mmapped_file("test_mmap_import.bin", 0 /** Whole file */, 0);
    ARM_COMPUTE_EXPECT(mmapped_file.is_mapped(), framework::LogLevel::ERRORS);
    unsigned char *data = mmapped_file.data();

    // Import memory mapped memory
    ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(data)), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Fill tensor
    std::uniform_real_distribution<float> distribution(-5.f, 5.f);
    std::mt19937                          gen(library->seed());
    auto                                 *typed_ptr = reinterpret_cast<float *>(data);
    for(unsigned int i = 0; i < total_size_in_elems; ++i)
    {
        typed_ptr[i] = distribution(gen);
    }

    // Execute function and sync
    act_func.run();

    // Validate result by checking that the input has no negative values
    for(unsigned int i = 0; i < total_size_in_elems; ++i)
    {
        ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
    }

    // Release resources
    tensor.allocator()->free();
    ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
}
#endif // !defined(BARE_METAL)

TEST_CASE(AlignedAlloc, framework::DatasetMode::ALL)
{
    // Init tensor info
    TensorInfo   info(TensorShape(24U, 16U, 3U), 1, DataType::F32);
    const size_t requested_alignment = 1024;

    Tensor t;
    t.allocator()->init(info, requested_alignment);
    t.allocator()->allocate();

    ARM_COMPUTE_EXPECT(t.buffer() != nullptr, framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(t.allocator()->alignment() == requested_alignment, framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(arm_compute::utility::check_aligned(reinterpret_cast<void *>(t.buffer()), requested_alignment),
                       framework::LogLevel::ERRORS);
}

TEST_SUITE_END()
TEST_SUITE_END()
TEST_SUITE_END()
} // namespace validation
} // namespace test
} // namespace arm_compute