aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/Helpers.h
blob: 2c1df39f143b27041a190b7a5397fbfa89544efe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_TEST_VALIDATION_HELPERS_H__
#define __ARM_COMPUTE_TEST_VALIDATION_HELPERS_H__

#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "support/Half.h"
#include "tests/Globals.h"
#include "tests/SimpleTensor.h"

#include <random>
#include <type_traits>
#include <utility>

namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename T>
struct is_floating_point : public std::is_floating_point<T>
{
};

template <>
struct is_floating_point<half> : public std::true_type
{
};

/** Helper function to get the testing range for each activation layer.
 *
 * @param[in] activation Activation function to test.
 * @param[in] data_type  Data type.
 *
 * @return A pair containing the lower upper testing bounds for a given function.
 */
template <typename T>
std::pair<T, T> get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction activation, DataType data_type)
{
    std::pair<T, T> bounds;

    switch(data_type)
    {
        case DataType::F16:
        {
            using namespace half_float::literal;

            switch(activation)
            {
                case ActivationLayerInfo::ActivationFunction::TANH:
                case ActivationLayerInfo::ActivationFunction::SQUARE:
                case ActivationLayerInfo::ActivationFunction::LOGISTIC:
                case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
                    // Reduce range as exponent overflows
                    bounds = std::make_pair(-2._h, 2._h);
                    break;
                case ActivationLayerInfo::ActivationFunction::SQRT:
                    // Reduce range as sqrt should take a non-negative number
                    bounds = std::make_pair(0._h, 128._h);
                    break;
                default:
                    bounds = std::make_pair(-255._h, 255._h);
                    break;
            }
            break;
        }
        case DataType::F32:
            switch(activation)
            {
                case ActivationLayerInfo::ActivationFunction::LOGISTIC:
                case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
                    // Reduce range as exponent overflows
                    bounds = std::make_pair(-40.f, 40.f);
                    break;
                case ActivationLayerInfo::ActivationFunction::SQRT:
                    // Reduce range as sqrt should take a non-negative number
                    bounds = std::make_pair(0.f, 255.f);
                    break;
                default:
                    bounds = std::make_pair(-255.f, 255.f);
                    break;
            }
            break;
        default:
            ARM_COMPUTE_ERROR("Unsupported data type");
    }

    return bounds;
}

/** Fill mask with the corresponding given pattern.
 *
 * @param[in,out] mask    Mask to be filled according to pattern
 * @param[in]     cols    Columns (width) of mask
 * @param[in]     rows    Rows (height) of mask
 * @param[in]     pattern Pattern to fill the mask according to
 */
void fill_mask_from_pattern(uint8_t *mask, int cols, int rows, MatrixPattern pattern);

/** Calculate output tensor shape give a vector of input tensor to concatenate
 *
 * @param[in] input_shapes Shapes of the tensors to concatenate across depth.
 *
 * @return The shape of output concatenated tensor.
 */
TensorShape calculate_depth_concatenate_shape(const std::vector<TensorShape> &input_shapes);

/** Calculate output tensor shape for the concatenate operation along a given axis
 *
 * @param[in] input_shapes Shapes of the tensors to concatenate across width.
 * @param[in] axis         Axis to use for the concatenate operation
 *
 * @return The shape of output concatenated tensor.
 */
TensorShape calculate_concatenate_shape(const std::vector<TensorShape> &input_shapes, size_t axis);

/** Parameters of Harris Corners algorithm. */
struct HarrisCornersParameters
{
    float   threshold{ 0.f };           /**< Threshold */
    float   sensitivity{ 0.f };         /**< Sensitivity */
    float   min_dist{ 0.f };            /**< Minimum distance */
    uint8_t constant_border_value{ 0 }; /**< Border value */
};

/** Generate parameters for Harris Corners algorithm. */
HarrisCornersParameters harris_corners_parameters();

/** Parameters of Canny edge algorithm. */
struct CannyEdgeParameters
{
    int32_t upper_thresh{ 255 };
    int32_t lower_thresh{ 0 };
    uint8_t constant_border_value{ 0 };
};

/** Generate parameters for Canny edge algorithm. */
CannyEdgeParameters canny_edge_parameters();

/** Helper function to fill the Lut random by a ILutAccessor.
 *
 * @param[in,out] table Accessor at the Lut.
 *
 */
template <typename T>
void fill_lookuptable(T &&table)
{
    std::mt19937                                          generator(library->seed());
    std::uniform_int_distribution<typename T::value_type> distribution(std::numeric_limits<typename T::value_type>::min(), std::numeric_limits<typename T::value_type>::max());

    for(int i = std::numeric_limits<typename T::value_type>::min(); i <= std::numeric_limits<typename T::value_type>::max(); i++)
    {
        table[i] = distribution(generator);
    }
}

/** Convert 8-bit asymmetric quantized simple tensor into float using tensor quantization information.
 *
 * @param[in] src Quantized tensor.
 *
 * @return Float tensor.
 */
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint8_t> &src);

/** Convert 16-bit asymmetric quantized simple tensor into float using tensor quantization information.
 *
 * @param[in] src Quantized tensor.
 *
 * @return Float tensor.
 */
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint16_t> &src);

/** Convert float simple tensor into quantized using specified quantization information.
 *
 * @param[in] src               Float tensor.
 * @param[in] quantization_info Quantification information.
 *
 * @return Quantized tensor.
 */
template <typename T>
SimpleTensor<T> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info);

/** Convert quantized simple tensor into float using tensor quantization information.
 *
 * @param[in] src Quantized tensor.
 *
 * @return Float tensor.
 */
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint16_t> &src);

/** Convert quantized simple tensor into float using tensor quantization information.
 *
 * @param[in] src Quantized tensor.
 *
 * @return Float tensor.
 */
template <typename T>
SimpleTensor<float> convert_from_symmetric(const SimpleTensor<T> &src);

/** Convert float simple tensor into quantized using specified quantization information.
 *
 * @param[in] src               Float tensor.
 * @param[in] quantization_info Quantification information.
 *
 * @return Quantized tensor.
 */
template <typename T>
SimpleTensor<T> convert_to_symmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info);

/** Matrix multiply between 2 float simple tensors
 *
 * @param[in]  a   Input tensor A
 * @param[in]  b   Input tensor B
 * @param[out] out Output tensor
 *
 */
template <typename T>
void matrix_multiply(const SimpleTensor<T> &a, const SimpleTensor<T> &b, SimpleTensor<T> &out);

/** Transpose matrix
 *
 * @param[in]  in  Input tensor
 * @param[out] out Output tensor
 *
 */
template <typename T>
void transpose_matrix(const SimpleTensor<T> &in, SimpleTensor<T> &out);

/** Get a 2D tile from a tensor
 *
 * @note In case of out-of-bound reads, the tile will be filled with zeros
 *
 * @param[in]  in    Input tensor
 * @param[out] tile  Tile
 * @param[in]  coord Coordinates
 */
template <typename T>
void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord);

/** Fill with zeros the input tensor in the area defined by anchor and shape
 *
 * @param[in]  in     Input tensor to fill with zeros
 * @param[out] anchor Starting point of the zeros area
 * @param[in]  shape  Ending point of the zeros area
 */
template <typename T>
void zeros(SimpleTensor<T> &in, const Coordinates &anchor, const TensorShape &shape);

/** Helper function to compute quantized min and max bounds
 *
 * @param[in] quant_info Quantization info to be used for conversion
 * @param[in] min        Floating point minimum value to be quantized
 * @param[in] max        Floating point maximum value to be quantized
 */
std::pair<int, int> get_quantized_bounds(const QuantizationInfo &quant_info, float min, float max);

/** Helper function to compute symmetric quantized min and max bounds
 *
 * @param[in] quant_info Quantization info to be used for conversion
 * @param[in] min        Floating point minimum value to be quantized
 * @param[in] max        Floating point maximum value to be quantized
 * @param[in] channel_id Channel id for per channel quantization info.
 */
std::pair<int, int> get_symm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id = 0);

/** Helper function to compute asymmetric quantized min and max bounds
 *
 * @param[in] quant_info Quantization info to be used for conversion
 * @param[in] min        Floating point minimum value to be quantized
 * @param[in] max        Floating point maximum value to be quantized
 * @param[in] channel_id Channel id for per channel quantization info.
 */
std::pair<int, int> get_asymm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id = 0);
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TEST_VALIDATION_HELPERS_H__ */