aboutsummaryrefslogtreecommitdiff
path: root/tests/AssetsLibrary.h
blob: 280f6ddbd07b0b7e240a06261f25dff8f73f1cfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_TEST_TENSOR_LIBRARY_H__
#define __ARM_COMPUTE_TEST_TENSOR_LIBRARY_H__

#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/Random.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include "libnpy/npy.hpp"
#pragma GCC diagnostic pop
#include "tests/RawTensor.h"
#include "tests/TensorCache.h"
#include "tests/Utils.h"
#include "tests/framework/Exceptions.h"

#include <algorithm>
#include <cstddef>
#include <fstream>
#include <random>
#include <string>
#include <type_traits>
#include <vector>

namespace arm_compute
{
namespace test
{
/** Factory class to create and fill tensors.
 *
 * Allows to initialise tensors from loaded images or by specifying the shape
 * explicitly. Furthermore, provides methods to fill tensors with the content of
 * loaded images or with random values.
 */
class AssetsLibrary final
{
public:
    using RangePair = std::pair<float, float>;

public:
    /** Initialises the library with a @p path to the assets directory.
     * Furthermore, sets the seed for the random generator to @p seed.
     *
     * @param[in] path Path to load assets from.
     * @param[in] seed Seed used to initialise the random number generator.
     */
    AssetsLibrary(std::string path, std::random_device::result_type seed);

    /** Path to assets directory used to initialise library.
     *
     * @return the path to the assets directory.
     */
    std::string path() const;

    /** Seed that is used to fill tensors with random values.
     *
     * @return the initial random seed.
     */
    std::random_device::result_type seed() const;

    /** Provides a tensor shape for the specified image.
     *
     * @param[in] name Image file used to look up the raw tensor.
     *
     * @return the tensor shape for the specified image.
     */
    TensorShape get_image_shape(const std::string &name);

    /** Provides a constant raw tensor for the specified image.
     *
     * @param[in] name Image file used to look up the raw tensor.
     *
     * @return a raw tensor for the specified image.
     */
    const RawTensor &get(const std::string &name) const;

    /** Provides a raw tensor for the specified image.
     *
     * @param[in] name Image file used to look up the raw tensor.
     *
     * @return a raw tensor for the specified image.
     */
    RawTensor get(const std::string &name);

    /** Creates an uninitialised raw tensor with the given @p data_type and @p
     * num_channels. The shape is derived from the specified image.
     *
     * @param[in] name         Image file used to initialise the tensor.
     * @param[in] data_type    Data type used to initialise the tensor.
     * @param[in] num_channels Number of channels used to initialise the tensor.
     *
     * @return a raw tensor for the specified image.
     */
    RawTensor get(const std::string &name, DataType data_type, int num_channels = 1) const;

    /** Provides a contant raw tensor for the specified image after it has been
     * converted to @p format.
     *
     * @param[in] name   Image file used to look up the raw tensor.
     * @param[in] format Format used to look up the raw tensor.
     *
     * @return a raw tensor for the specified image.
     */
    const RawTensor &get(const std::string &name, Format format) const;

    /** Provides a raw tensor for the specified image after it has been
     * converted to @p format.
     *
     * @param[in] name   Image file used to look up the raw tensor.
     * @param[in] format Format used to look up the raw tensor.
     *
     * @return a raw tensor for the specified image.
     */
    RawTensor get(const std::string &name, Format format);

    /** Provides a contant raw tensor for the specified channel after it has
     * been extracted form the given image.
     *
     * @param[in] name    Image file used to look up the raw tensor.
     * @param[in] channel Channel used to look up the raw tensor.
     *
     * @note The channel has to be unambiguous so that the format can be
     *       inferred automatically.
     *
     * @return a raw tensor for the specified image channel.
     */
    const RawTensor &get(const std::string &name, Channel channel) const;

    /** Provides a raw tensor for the specified channel after it has been
     * extracted form the given image.
     *
     * @param[in] name    Image file used to look up the raw tensor.
     * @param[in] channel Channel used to look up the raw tensor.
     *
     * @note The channel has to be unambiguous so that the format can be
     *       inferred automatically.
     *
     * @return a raw tensor for the specified image channel.
     */
    RawTensor get(const std::string &name, Channel channel);

    /** Provides a constant raw tensor for the specified channel after it has
     * been extracted form the given image formatted to @p format.
     *
     * @param[in] name    Image file used to look up the raw tensor.
     * @param[in] format  Format used to look up the raw tensor.
     * @param[in] channel Channel used to look up the raw tensor.
     *
     * @return a raw tensor for the specified image channel.
     */
    const RawTensor &get(const std::string &name, Format format, Channel channel) const;

    /** Provides a raw tensor for the specified channel after it has been
     * extracted form the given image formatted to @p format.
     *
     * @param[in] name    Image file used to look up the raw tensor.
     * @param[in] format  Format used to look up the raw tensor.
     * @param[in] channel Channel used to look up the raw tensor.
     *
     * @return a raw tensor for the specified image channel.
     */
    RawTensor get(const std::string &name, Format format, Channel channel);

    /** Puts garbage values all around the tensor for testing purposes
     *
     * @param[in, out] tensor       To be filled tensor.
     * @param[in]      distribution Distribution used to fill the tensor's surroundings.
     * @param[in]      seed_offset  The offset will be added to the global seed before initialising the random generator.
     */
    template <typename T, typename D>
    void fill_borders_with_garbage(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const;

    /** Fills the specified @p tensor with random values drawn from @p
     * distribution.
     *
     * @param[in, out] tensor       To be filled tensor.
     * @param[in]      distribution Distribution used to fill the tensor.
     * @param[in]      seed_offset  The offset will be added to the global seed before initialising the random generator.
     *
     * @note The @p distribution has to provide operator(Generator &) which
     *       will be used to draw samples.
     */
    template <typename T, typename D>
    void fill(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const;

    template <typename T, typename D>
    void fill_boxes(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const;

    /** Fills the specified @p raw tensor with random values drawn from @p
     * distribution.
     *
     * @param[in, out] raw          To be filled raw.
     * @param[in]      distribution Distribution used to fill the tensor.
     * @param[in]      seed_offset  The offset will be added to the global seed before initialising the random generator.
     *
     * @note The @p distribution has to provide operator(Generator &) which
     *       will be used to draw samples.
     */
    template <typename D>
    void fill(RawTensor &raw, D &&distribution, std::random_device::result_type seed_offset) const;

    /** Fills the specified @p tensor with the content of the specified image
     * converted to the given format.
     *
     * @param[in, out] tensor To be filled tensor.
     * @param[in]      name   Image file used to fill the tensor.
     * @param[in]      format Format of the image used to fill the tensor.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    template <typename T>
    void fill(T &&tensor, const std::string &name, Format format) const;

    /** Fills the raw tensor with the content of the specified image
     * converted to the given format.
     *
     * @param[in, out] raw    To be filled raw tensor.
     * @param[in]      name   Image file used to fill the tensor.
     * @param[in]      format Format of the image used to fill the tensor.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    void fill(RawTensor &raw, const std::string &name, Format format) const;

    /** Fills the specified @p tensor with the content of the specified channel
     * extracted from the given image.
     *
     * @param[in, out] tensor  To be filled tensor.
     * @param[in]      name    Image file used to fill the tensor.
     * @param[in]      channel Channel of the image used to fill the tensor.
     *
     * @note The channel has to be unambiguous so that the format can be
     *       inferred automatically.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    template <typename T>
    void fill(T &&tensor, const std::string &name, Channel channel) const;

    /** Fills the raw tensor with the content of the specified channel
     * extracted from the given image.
     *
     * @param[in, out] raw     To be filled raw tensor.
     * @param[in]      name    Image file used to fill the tensor.
     * @param[in]      channel Channel of the image used to fill the tensor.
     *
     * @note The channel has to be unambiguous so that the format can be
     *       inferred automatically.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    void fill(RawTensor &raw, const std::string &name, Channel channel) const;

    /** Fills the specified @p tensor with the content of the specified channel
     * extracted from the given image after it has been converted to the given
     * format.
     *
     * @param[in, out] tensor  To be filled tensor.
     * @param[in]      name    Image file used to fill the tensor.
     * @param[in]      format  Format of the image used to fill the tensor.
     * @param[in]      channel Channel of the image used to fill the tensor.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    template <typename T>
    void fill(T &&tensor, const std::string &name, Format format, Channel channel) const;

    /** Fills the raw tensor with the content of the specified channel
     * extracted from the given image after it has been converted to the given
     * format.
     *
     * @param[in, out] raw     To be filled raw tensor.
     * @param[in]      name    Image file used to fill the tensor.
     * @param[in]      format  Format of the image used to fill the tensor.
     * @param[in]      channel Channel of the image used to fill the tensor.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    void fill(RawTensor &raw, const std::string &name, Format format, Channel channel) const;

    /** Fills the specified @p tensor with the content of the raw tensor.
     *
     * @param[in, out] tensor To be filled tensor.
     * @param[in]      raw    Raw tensor used to fill the tensor.
     *
     * @warning No check is performed that the specified format actually
     *          matches the format of the tensor.
     */
    template <typename T>
    void fill(T &&tensor, RawTensor raw) const;

    /** Fill a tensor with uniform distribution
     *
     * @param[in, out] tensor      To be filled tensor.
     * @param[in]      seed_offset The offset will be added to the global seed before initialising the random generator.
     */
    template <typename T>
    void fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset) const;

    /** Fill a tensor with uniform distribution
     *
     * @param[in, out] tensor      To be filled tensor.
     * @param[in]      seed_offset The offset will be added to the global seed before initialising the random generator.
     * @param[in]      low         lowest value in the range (inclusive)
     * @param[in]      high        highest value in the range (inclusive)
     *
     * @note    @p low and @p high must be of the same type as the data type of @p tensor
     */
    template <typename T, typename D>
    void fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset, D low, D high) const;

    /** Fill a tensor with uniform distribution across the specified range
     *
     * @param[in, out] tensor               To be filled tensor.
     * @param[in]      seed_offset          The offset will be added to the global seed before initialising the random generator.
     * @param[in]      excluded_range_pairs Ranges to exclude from the generator
     */
    template <typename T>
    void fill_tensor_uniform_ranged(T                                          &&tensor,
                                    std::random_device::result_type              seed_offset,
                                    const std::vector<AssetsLibrary::RangePair> &excluded_range_pairs) const;

    /** Fills the specified @p tensor with data loaded from .npy (numpy binary) in specified path.
     *
     * @param[in, out] tensor To be filled tensor.
     * @param[in]      name   Data file.
     *
     * @note The numpy array stored in the binary .npy file must be row-major in the sense that it
     * must store elements within a row consecutively in the memory, then rows within a 2D slice,
     * then 2D slices within a 3D slice and so on. Note that it imposes no restrictions on what
     * indexing convention is used in the numpy array. That is, the numpy array can be either fortran
     * style or C style as long as it adheres to the rule above.
     *
     * More concretely, the orders of dimensions for each style are as follows:
     * C-style (numpy default):
     *      array[HigherDims..., Z, Y, X]
     * Fortran style:
     *      array[X, Y, Z, HigherDims...]
     */
    template <typename T>
    void fill_layer_data(T &&tensor, std::string name) const;

    /** Fill a tensor with a constant value
     *
     * @param[in, out] tensor To be filled tensor.
     * @param[in]      value  Value to be assigned to all elements of the input tensor.
     *
     * @note    @p value must be of the same type as the data type of @p tensor
     */
    template <typename T, typename D>
    void fill_tensor_value(T &&tensor, D value) const;

private:
    // Function prototype to convert between image formats.
    using Converter = void (*)(const RawTensor &src, RawTensor &dst);
    // Function prototype to extract a channel from an image.
    using Extractor = void (*)(const RawTensor &src, RawTensor &dst);
    // Function prototype to load an image file.
    using Loader = RawTensor (*)(const std::string &path);

    const Converter &get_converter(Format src, Format dst) const;
    const Converter &get_converter(DataType src, Format dst) const;
    const Converter &get_converter(Format src, DataType dst) const;
    const Converter &get_converter(DataType src, DataType dst) const;
    const Extractor &get_extractor(Format format, Channel) const;
    const Loader &get_loader(const std::string &extension) const;

    /** Creates a raw tensor from the specified image.
     *
     * @param[in] name To be loaded image file.
     *
     * @note If use_single_image is true @p name is ignored and the user image
     *       is loaded instead.
     */
    RawTensor load_image(const std::string &name) const;

    /** Provides a raw tensor for the specified image and format.
     *
     * @param[in] name   Image file used to look up the raw tensor.
     * @param[in] format Format used to look up the raw tensor.
     *
     * If the tensor has already been requested before the cached version will
     * be returned. Otherwise the tensor will be added to the cache.
     *
     * @note If use_single_image is true @p name is ignored and the user image
     *       is loaded instead.
     */
    const RawTensor &find_or_create_raw_tensor(const std::string &name, Format format) const;

    /** Provides a raw tensor for the specified image, format and channel.
     *
     * @param[in] name    Image file used to look up the raw tensor.
     * @param[in] format  Format used to look up the raw tensor.
     * @param[in] channel Channel used to look up the raw tensor.
     *
     * If the tensor has already been requested before the cached version will
     * be returned. Otherwise the tensor will be added to the cache.
     *
     * @note If use_single_image is true @p name is ignored and the user image
     *       is loaded instead.
     */
    const RawTensor &find_or_create_raw_tensor(const std::string &name, Format format, Channel channel) const;

    mutable TensorCache             _cache{};
    mutable arm_compute::Mutex      _format_lock{};
    mutable arm_compute::Mutex      _channel_lock{};
    const std::string               _library_path;
    std::random_device::result_type _seed;
};

namespace detail
{
template <typename T>
inline std::vector<std::pair<T, T>> convert_range_pair(const std::vector<AssetsLibrary::RangePair> &excluded_range_pairs)
{
    std::vector<std::pair<T, T>> converted;
    std::transform(excluded_range_pairs.begin(),
                   excluded_range_pairs.end(),
                   std::back_inserter(converted),
                   [](const AssetsLibrary::RangePair & p)
    {
        return std::pair<T, T>(static_cast<T>(p.first), static_cast<T>(p.second));
    });
    return converted;
}
} // namespace detail

template <typename T, typename D>
void AssetsLibrary::fill_borders_with_garbage(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const
{
    const PaddingSize padding_size = tensor.padding();

    Window window;
    window.set(0, Window::Dimension(-padding_size.left, tensor.shape()[0] + padding_size.right, 1));
    if(tensor.shape().num_dimensions() > 1)
    {
        window.set(1, Window::Dimension(-padding_size.top, tensor.shape()[1] + padding_size.bottom, 1));
    }

    std::mt19937 gen(_seed + seed_offset);

    execute_window_loop(window, [&](const Coordinates & id)
    {
        TensorShape shape = tensor.shape();

        // If outside of valid region
        if(id.x() < 0 || id.x() >= static_cast<int>(shape.x()) || id.y() < 0 || id.y() >= static_cast<int>(shape.y()))
        {
            using ResultType         = typename std::remove_reference<D>::type::result_type;
            const ResultType value   = distribution(gen);
            void *const      out_ptr = tensor(id);
            store_value_with_data_type(out_ptr, value, tensor.data_type());
        }
    });
}

template <typename T, typename D>
void AssetsLibrary::fill_boxes(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const
{
    using ResultType = typename std::remove_reference<D>::type::result_type;
    std::mt19937   gen(_seed + seed_offset);
    TensorShape    shape(tensor.shape());
    const uint32_t num_boxes = tensor.num_elements() / 4;
    // Iterate over all elements
    std::uniform_real_distribution<> size_dist(0.f, 1.f);
    for(uint32_t element_idx = 0; element_idx < num_boxes * 4; element_idx += 4)
    {
        const ResultType delta   = size_dist(gen);
        const ResultType epsilon = size_dist(gen);
        const ResultType left    = distribution(gen);
        const ResultType top     = distribution(gen);
        const ResultType right   = left + delta;
        const ResultType bottom  = top + epsilon;
        const std::tuple<ResultType, ResultType, ResultType, ResultType> box(left, top, right, bottom);
        Coordinates x1              = index2coord(shape, element_idx);
        Coordinates y1              = index2coord(shape, element_idx + 1);
        Coordinates x2              = index2coord(shape, element_idx + 2);
        Coordinates y2              = index2coord(shape, element_idx + 3);
        ResultType &target_value_x1 = reinterpret_cast<ResultType *>(tensor(x1))[0];
        ResultType &target_value_y1 = reinterpret_cast<ResultType *>(tensor(y1))[0];
        ResultType &target_value_x2 = reinterpret_cast<ResultType *>(tensor(x2))[0];
        ResultType &target_value_y2 = reinterpret_cast<ResultType *>(tensor(y2))[0];
        store_value_with_data_type(&target_value_x1, std::get<0>(box), tensor.data_type());
        store_value_with_data_type(&target_value_y1, std::get<1>(box), tensor.data_type());
        store_value_with_data_type(&target_value_x2, std::get<2>(box), tensor.data_type());
        store_value_with_data_type(&target_value_y2, std::get<3>(box), tensor.data_type());
    }
    fill_borders_with_garbage(tensor, distribution, seed_offset);
}

template <typename T, typename D>
void AssetsLibrary::fill(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const
{
    using ResultType = typename std::remove_reference<D>::type::result_type;

    std::mt19937 gen(_seed + seed_offset);

    const bool  is_nhwc = tensor.data_layout() == DataLayout::NHWC;
    TensorShape shape(tensor.shape());

    if(is_nhwc)
    {
        // Ensure that the equivalent tensors will be filled for both data layouts
        permute(shape, PermutationVector(1U, 2U, 0U));
    }

    // Iterate over all elements
    const uint32_t num_elements = tensor.num_elements();
    for(uint32_t element_idx = 0; element_idx < num_elements; ++element_idx)
    {
        Coordinates id = index2coord(shape, element_idx);

        if(is_nhwc)
        {
            // Write in the correct id for permuted shapes
            permute(id, PermutationVector(2U, 0U, 1U));
        }

        // Iterate over all channels
        for(int channel = 0; channel < tensor.num_channels(); ++channel)
        {
            const ResultType value        = distribution(gen);
            ResultType      &target_value = reinterpret_cast<ResultType *>(tensor(id))[channel];

            store_value_with_data_type(&target_value, value, tensor.data_type());
        }
    }

    fill_borders_with_garbage(tensor, distribution, seed_offset);
}

template <typename D>
void AssetsLibrary::fill(RawTensor &raw, D &&distribution, std::random_device::result_type seed_offset) const
{
    std::mt19937 gen(_seed + seed_offset);

    for(size_t offset = 0; offset < raw.size(); offset += raw.element_size())
    {
        using ResultType       = typename std::remove_reference<D>::type::result_type;
        const ResultType value = distribution(gen);

        store_value_with_data_type(raw.data() + offset, value, raw.data_type());
    }
}

template <typename T>
void AssetsLibrary::fill(T &&tensor, const std::string &name, Format format) const
{
    const RawTensor &raw = get(name, format);

    for(size_t offset = 0; offset < raw.size(); offset += raw.element_size())
    {
        const Coordinates id = index2coord(raw.shape(), offset / raw.element_size());

        const RawTensor::value_type *const raw_ptr = raw.data() + offset;
        const auto                         out_ptr = static_cast<RawTensor::value_type *>(tensor(id));
        std::copy_n(raw_ptr, raw.element_size(), out_ptr);
    }
}

template <typename T>
void AssetsLibrary::fill(T &&tensor, const std::string &name, Channel channel) const
{
    fill(std::forward<T>(tensor), name, get_format_for_channel(channel), channel);
}

template <typename T>
void AssetsLibrary::fill(T &&tensor, const std::string &name, Format format, Channel channel) const
{
    const RawTensor &raw = get(name, format, channel);

    for(size_t offset = 0; offset < raw.size(); offset += raw.element_size())
    {
        const Coordinates id = index2coord(raw.shape(), offset / raw.element_size());

        const RawTensor::value_type *const raw_ptr = raw.data() + offset;
        const auto                         out_ptr = static_cast<RawTensor::value_type *>(tensor(id));
        std::copy_n(raw_ptr, raw.element_size(), out_ptr);
    }
}

template <typename T>
void AssetsLibrary::fill(T &&tensor, RawTensor raw) const
{
    for(size_t offset = 0; offset < raw.size(); offset += raw.element_size())
    {
        const Coordinates id = index2coord(raw.shape(), offset / raw.element_size());

        const RawTensor::value_type *const raw_ptr = raw.data() + offset;
        const auto                         out_ptr = static_cast<RawTensor::value_type *>(tensor(id));
        std::copy_n(raw_ptr, raw.element_size(), out_ptr);
    }
}

template <typename T>
void AssetsLibrary::fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset) const
{
    switch(tensor.data_type())
    {
        case DataType::U8:
        case DataType::QASYMM8:
        case DataType::QASYMM8_PER_CHANNEL:
        {
            std::uniform_int_distribution<uint8_t> distribution_u8(std::numeric_limits<uint8_t>::lowest(), std::numeric_limits<uint8_t>::max());
            fill(tensor, distribution_u8, seed_offset);
            break;
        }
        case DataType::S8:
        case DataType::QSYMM8:
        case DataType::QASYMM8_SIGNED:
        {
            std::uniform_int_distribution<int8_t> distribution_s8(std::numeric_limits<int8_t>::lowest(), std::numeric_limits<int8_t>::max());
            fill(tensor, distribution_s8, seed_offset);
            break;
        }
        case DataType::U16:
        {
            std::uniform_int_distribution<uint16_t> distribution_u16(std::numeric_limits<uint16_t>::lowest(), std::numeric_limits<uint16_t>::max());
            fill(tensor, distribution_u16, seed_offset);
            break;
        }
        case DataType::S16:
        case DataType::QSYMM16:
        {
            std::uniform_int_distribution<int16_t> distribution_s16(std::numeric_limits<int16_t>::lowest(), std::numeric_limits<int16_t>::max());
            fill(tensor, distribution_s16, seed_offset);
            break;
        }
        case DataType::U32:
        {
            std::uniform_int_distribution<uint32_t> distribution_u32(std::numeric_limits<uint32_t>::lowest(), std::numeric_limits<uint32_t>::max());
            fill(tensor, distribution_u32, seed_offset);
            break;
        }
        case DataType::S32:
        {
            std::uniform_int_distribution<int32_t> distribution_s32(std::numeric_limits<int32_t>::lowest(), std::numeric_limits<int32_t>::max());
            fill(tensor, distribution_s32, seed_offset);
            break;
        }
        case DataType::U64:
        {
            std::uniform_int_distribution<uint64_t> distribution_u64(std::numeric_limits<uint64_t>::lowest(), std::numeric_limits<uint64_t>::max());
            fill(tensor, distribution_u64, seed_offset);
            break;
        }
        case DataType::S64:
        {
            std::uniform_int_distribution<int64_t> distribution_s64(std::numeric_limits<int64_t>::lowest(), std::numeric_limits<int64_t>::max());
            fill(tensor, distribution_s64, seed_offset);
            break;
        }
        case DataType::F16:
        {
            // It doesn't make sense to check [-inf, inf], so hard code it to a big number
            std::uniform_real_distribution<float> distribution_f16(-100.f, 100.f);
            fill(tensor, distribution_f16, seed_offset);
            break;
        }
        case DataType::F32:
        {
            // It doesn't make sense to check [-inf, inf], so hard code it to a big number
            std::uniform_real_distribution<float> distribution_f32(-1000.f, 1000.f);
            fill(tensor, distribution_f32, seed_offset);
            break;
        }
        case DataType::F64:
        {
            // It doesn't make sense to check [-inf, inf], so hard code it to a big number
            std::uniform_real_distribution<double> distribution_f64(-1000.f, 1000.f);
            fill(tensor, distribution_f64, seed_offset);
            break;
        }
        case DataType::SIZET:
        {
            std::uniform_int_distribution<size_t> distribution_sizet(std::numeric_limits<size_t>::lowest(), std::numeric_limits<size_t>::max());
            fill(tensor, distribution_sizet, seed_offset);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
    }
}

template <typename T>
void AssetsLibrary::fill_tensor_uniform_ranged(T                                          &&tensor,
                                               std::random_device::result_type              seed_offset,
                                               const std::vector<AssetsLibrary::RangePair> &excluded_range_pairs) const
{
    using namespace arm_compute::utils::random;

    switch(tensor.data_type())
    {
        case DataType::U8:
        case DataType::QASYMM8:
        {
            const auto                         converted_pairs = detail::convert_range_pair<uint8_t>(excluded_range_pairs);
            RangedUniformDistribution<uint8_t> distribution_u8(std::numeric_limits<uint8_t>::lowest(),
                                                               std::numeric_limits<uint8_t>::max(),
                                                               converted_pairs);
            fill(tensor, distribution_u8, seed_offset);
            break;
        }
        case DataType::S8:
        case DataType::QSYMM8:
        {
            const auto                        converted_pairs = detail::convert_range_pair<int8_t>(excluded_range_pairs);
            RangedUniformDistribution<int8_t> distribution_s8(std::numeric_limits<int8_t>::lowest(),
                                                              std::numeric_limits<int8_t>::max(),
                                                              converted_pairs);
            fill(tensor, distribution_s8, seed_offset);
            break;
        }
        case DataType::U16:
        {
            const auto                          converted_pairs = detail::convert_range_pair<uint16_t>(excluded_range_pairs);
            RangedUniformDistribution<uint16_t> distribution_u16(std::numeric_limits<uint16_t>::lowest(),
                                                                 std::numeric_limits<uint16_t>::max(),
                                                                 converted_pairs);
            fill(tensor, distribution_u16, seed_offset);
            break;
        }
        case DataType::S16:
        case DataType::QSYMM16:
        {
            const auto                         converted_pairs = detail::convert_range_pair<int16_t>(excluded_range_pairs);
            RangedUniformDistribution<int16_t> distribution_s16(std::numeric_limits<int16_t>::lowest(),
                                                                std::numeric_limits<int16_t>::max(),
                                                                converted_pairs);
            fill(tensor, distribution_s16, seed_offset);
            break;
        }
        case DataType::U32:
        {
            const auto                          converted_pairs = detail::convert_range_pair<uint32_t>(excluded_range_pairs);
            RangedUniformDistribution<uint32_t> distribution_u32(std::numeric_limits<uint32_t>::lowest(),
                                                                 std::numeric_limits<uint32_t>::max(),
                                                                 converted_pairs);
            fill(tensor, distribution_u32, seed_offset);
            break;
        }
        case DataType::S32:
        {
            const auto                         converted_pairs = detail::convert_range_pair<int32_t>(excluded_range_pairs);
            RangedUniformDistribution<int32_t> distribution_s32(std::numeric_limits<int32_t>::lowest(),
                                                                std::numeric_limits<int32_t>::max(),
                                                                converted_pairs);
            fill(tensor, distribution_s32, seed_offset);
            break;
        }
        case DataType::F16:
        {
            // It doesn't make sense to check [-inf, inf], so hard code it to a big number
            const auto                       converted_pairs = detail::convert_range_pair<float>(excluded_range_pairs);
            RangedUniformDistribution<float> distribution_f16(-100.f, 100.f, converted_pairs);
            fill(tensor, distribution_f16, seed_offset);
            break;
        }
        case DataType::F32:
        {
            // It doesn't make sense to check [-inf, inf], so hard code it to a big number
            const auto                       converted_pairs = detail::convert_range_pair<float>(excluded_range_pairs);
            RangedUniformDistribution<float> distribution_f32(-1000.f, 1000.f, converted_pairs);
            fill(tensor, distribution_f32, seed_offset);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
    }
}

template <typename T, typename D>
void AssetsLibrary::fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset, D low, D high) const
{
    switch(tensor.data_type())
    {
        case DataType::U8:
        case DataType::QASYMM8:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<uint8_t, D>::value));
            std::uniform_int_distribution<uint8_t> distribution_u8(low, high);
            fill(tensor, distribution_u8, seed_offset);
            break;
        }
        case DataType::S8:
        case DataType::QSYMM8:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<int8_t, D>::value));
            std::uniform_int_distribution<int8_t> distribution_s8(low, high);
            fill(tensor, distribution_s8, seed_offset);
            break;
        }
        case DataType::U16:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<uint16_t, D>::value));
            std::uniform_int_distribution<uint16_t> distribution_u16(low, high);
            fill(tensor, distribution_u16, seed_offset);
            break;
        }
        case DataType::S16:
        case DataType::QSYMM16:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<int16_t, D>::value));
            std::uniform_int_distribution<int16_t> distribution_s16(low, high);
            fill(tensor, distribution_s16, seed_offset);
            break;
        }
        case DataType::U32:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<uint32_t, D>::value));
            std::uniform_int_distribution<uint32_t> distribution_u32(low, high);
            fill(tensor, distribution_u32, seed_offset);
            break;
        }
        case DataType::S32:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<int32_t, D>::value));
            std::uniform_int_distribution<int32_t> distribution_s32(low, high);
            fill(tensor, distribution_s32, seed_offset);
            break;
        }
        case DataType::U64:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<uint64_t, D>::value));
            std::uniform_int_distribution<uint64_t> distribution_u64(low, high);
            fill(tensor, distribution_u64, seed_offset);
            break;
        }
        case DataType::S64:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<int64_t, D>::value));
            std::uniform_int_distribution<int64_t> distribution_s64(low, high);
            fill(tensor, distribution_s64, seed_offset);
            break;
        }
        case DataType::F16:
        {
            std::uniform_real_distribution<float> distribution_f16(low, high);
            fill(tensor, distribution_f16, seed_offset);
            break;
        }
        case DataType::F32:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<float, D>::value));
            std::uniform_real_distribution<float> distribution_f32(low, high);
            fill(tensor, distribution_f32, seed_offset);
            break;
        }
        case DataType::F64:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<double, D>::value));
            std::uniform_real_distribution<double> distribution_f64(low, high);
            fill(tensor, distribution_f64, seed_offset);
            break;
        }
        case DataType::SIZET:
        {
            ARM_COMPUTE_ERROR_ON(!(std::is_same<size_t, D>::value));
            std::uniform_int_distribution<size_t> distribution_sizet(low, high);
            fill(tensor, distribution_sizet, seed_offset);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
    }
}

template <typename T>
void AssetsLibrary::fill_layer_data(T &&tensor, std::string name) const
{
#ifdef _WIN32
    const std::string path_separator("\\");
#else  /* _WIN32 */
    const std::string path_separator("/");
#endif /* _WIN32 */
    const std::string path = _library_path + path_separator + name;

    std::vector<unsigned long> shape;

    // Open file
    std::ifstream stream(path, std::ios::in | std::ios::binary);
    if(!stream.good())
    {
        throw framework::FileNotFound("Could not load npy file: " + path);
    }
    std::string header = npy::read_header(stream);

    // Parse header
    bool        fortran_order = false;
    std::string typestr;
    npy::parse_header(header, typestr, fortran_order, shape);

    // Check if the typestring matches the given one
    std::string expect_typestr = get_typestring(tensor.data_type());
    ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch");

    // Validate tensor shape
    ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor.shape().num_dimensions(), "Tensor ranks mismatch");
    if(fortran_order)
    {
        for(size_t i = 0; i < shape.size(); ++i)
        {
            ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != shape[i], "Tensor dimensions mismatch");
        }
    }
    else
    {
        for(size_t i = 0; i < shape.size(); ++i)
        {
            ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != shape[shape.size() - i - 1], "Tensor dimensions mismatch");
        }
    }

    // Read data
    if(tensor.padding().empty())
    {
        // If tensor has no padding read directly from stream.
        stream.read(reinterpret_cast<char *>(tensor.data()), tensor.size());
    }
    else
    {
        // If tensor has padding accessing tensor elements through execution window.
        Window window;
        window.use_tensor_dimensions(tensor.shape());

        execute_window_loop(window, [&](const Coordinates & id)
        {
            stream.read(reinterpret_cast<char *>(tensor(id)), tensor.element_size());
        });
    }
}

template <typename T, typename D>
void AssetsLibrary::fill_tensor_value(T &&tensor, D value) const
{
    fill_tensor_uniform(tensor, 0, value, value);
}
} // namespace test
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TEST_TENSOR_LIBRARY_H__ */