aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/cpu/operators/CpuScale.cpp
blob: 681a15e26c019042ec23557ce513e10cff654f57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/runtime/cpu/operators/CpuScale.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/core/cpu/kernels/CpuScaleKernel.h"
#include "src/core/utils/ScaleUtils.h"
#include "support/Rounding.h"

namespace arm_compute
{
namespace cpu
{
namespace
{
void precompute_dx_dy_offsets(ITensor *dx, ITensor *dy, ITensor *offsets, float wr, float hr, SamplingPolicy sampling_policy, bool align_corners)
{
    ARM_COMPUTE_ERROR_ON(offsets == nullptr);
    float sampling_offset = 0.0f;
    if(sampling_policy == SamplingPolicy::CENTER)
    {
        sampling_offset = 0.5f;
    }

    Window win;
    win.set(Window::DimX, Window::Dimension(0, offsets->info()->dimension(0), 1));
    win.set(Window::DimY, Window::Dimension(0, offsets->info()->dimension(1), 1));

    if(dx != nullptr && dy != nullptr)
    {
        // Pre-compute the offset and pixel's distance for BILINEAR interpolation
        Iterator offsets_it(offsets, win);
        Iterator dx_it(dx, win);
        Iterator dy_it(dy, win);

        execute_window_loop(win, [&](const Coordinates & id)
        {
            const float in_x  = (id.x() + sampling_offset) * wr - sampling_offset;
            const float in_y  = (id.y() + sampling_offset) * hr - sampling_offset;
            const int   in_xi = std::floor(in_x);
            const int   in_yi = std::floor(in_y);

            *reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
            *reinterpret_cast<float *>(dx_it.ptr())        = in_x - in_xi;
            *reinterpret_cast<float *>(dy_it.ptr())        = in_y - in_yi;
        },
        offsets_it, dx_it, dy_it);
    }
    else
    {
        // Pre-compute the offset for NEAREST interpolation
        Iterator offsets_it(offsets, win);

        execute_window_loop(win, [&](const Coordinates & id)
        {
            const float float_in_xi                        = (id.x() + sampling_offset) * wr;
            const auto  in_xi                              = static_cast<size_t>(align_corners ? arm_compute::utils::rounding::round_half_away_from_zero(float_in_xi) : std::floor(float_in_xi));
            *reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
        },
        offsets_it);
    }
}
} // namespace

CpuScale::CpuScale()
    : _scale_info(InterpolationPolicy::NEAREST_NEIGHBOR, BorderMode::UNDEFINED), _data_layout(DataLayout::UNKNOWN), _is_prepared(false)
{
}

void CpuScale::configure(ITensorInfo *src, ITensorInfo *dst, const ScaleKernelInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
    ARM_COMPUTE_ERROR_THROW_ON(CpuScale::validate(src, dst, info));

    _scale_info = info;

    // Get data layout and width/height indices
    _data_layout = _scale_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : _scale_info.data_layout;
    const int        idx_width   = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

    // Compute the ratio between source width/height and destination width/height
    const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy);
    const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used);
    const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used);

    // Area interpolation behaves as Nearest Neighbour in case of up-sampling
    InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f
                                         && hr <= 1.f) ?
                                        InterpolationPolicy::NEAREST_NEIGHBOR :
                                        _scale_info.interpolation_policy;

    // Get the tensor shape
    TensorShape shape(dst->dimension(idx_width));
    shape.set(1, dst->dimension(idx_height), false);

    TensorInfo tensor_info_offsets(shape, Format::S32);
    TensorInfo tensor_info_dxdy(shape, Format::F32);

    auto dx           = std::make_unique<TensorInfo>(tensor_info_dxdy);
    auto dy           = std::make_unique<TensorInfo>(tensor_info_dxdy);
    auto offsets      = std::make_unique<TensorInfo>(tensor_info_offsets);
    auto scale_kernel = std::make_unique<kernels::CpuScaleKernel>();
    switch(policy_to_use)
    {
        case InterpolationPolicy::NEAREST_NEIGHBOR:
        {
            scale_kernel->configure(src, nullptr, nullptr, offsets.get(), dst, info);
            break;
        }
        case InterpolationPolicy::BILINEAR:
        {
            scale_kernel->configure(src, dx.get(), dy.get(), offsets.get(), dst, info);
            break;
        }
        case InterpolationPolicy::AREA:
        {
            scale_kernel->configure(src, nullptr, nullptr, nullptr, dst, info);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("Unsupported interpolation mode");
    }
    _kernel = std::move(scale_kernel);
}

Status CpuScale::validate(const ITensorInfo *src, const ITensorInfo *dst, const ScaleKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
    ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);

    ITensorInfo *offsets = nullptr;
    ITensorInfo *dx      = nullptr;
    ITensorInfo *dy      = nullptr;

    // Get data layout and width/height indices
    const DataLayout data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    // Compute the ratio between source width/height and destination width/height
    const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy);
    const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used);
    const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used);

    // Area interpolation behaves as Nearest Neighbour in case of up-sampling
    InterpolationPolicy policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy;

    // Get the tensor shape of auxilary buffers
    const TensorShape shape(dst->dimension(idx_width), dst->dimension(idx_height));
    TensorInfo        tensor_info_offsets(shape, Format::S32);
    TensorInfo        tensor_info_dx(shape, Format::F32);
    TensorInfo        tensor_info_dy(shape, Format::F32);
    switch(policy_to_use)
    {
        case InterpolationPolicy::NEAREST_NEIGHBOR:
            offsets = &tensor_info_offsets;
            break;
        case InterpolationPolicy::BILINEAR:
            offsets = &tensor_info_offsets;
            dx      = &tensor_info_dx;
            dy      = &tensor_info_dy;
            break;
        default:
            break;
    }

    ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuScaleKernel::validate(src->clone().get(), dx, dy, offsets, dst->clone().get(), info));
    return Status{};
}

void CpuScale::prepare(ITensorPack &tensors)
{
    if(!_is_prepared)
    {
        _is_prepared       = true;
        const auto src     = tensors.get_const_tensor(TensorType::ACL_SRC);
        auto       dst     = tensors.get_tensor(TensorType::ACL_DST);
        auto       dx      = tensors.get_tensor(TensorType::ACL_INT_0);
        auto       dy      = tensors.get_tensor(TensorType::ACL_INT_1);
        auto       offsets = tensors.get_tensor(TensorType::ACL_INT_2);

        // Get data layout and width/height indices
        const int        idx_width   = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
        const int        idx_height  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

        // Compute the ratio between source width/height and destination width/height
        const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy);
        const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_width), dst->info()->dimension(idx_width), is_align_corners_used);
        const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), is_align_corners_used);

        // Area interpolation behaves as Nearest Neighbour in case of up-sampling
        InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f
                                             && hr <= 1.f) ?
                                            InterpolationPolicy::NEAREST_NEIGHBOR :
                                            _scale_info.interpolation_policy;
        const SamplingPolicy sampling_policy = _scale_info.sampling_policy;

        switch(policy_to_use)
        {
            case InterpolationPolicy::NEAREST_NEIGHBOR:
            {
                // Pre-compute offsets for nearest interpolation
                precompute_dx_dy_offsets(nullptr, nullptr, offsets, wr, hr, sampling_policy, is_align_corners_used);
                break;
            }
            case InterpolationPolicy::BILINEAR:
            {
                // Pre-compute dx, dy and offsets for bilinear interpolation
                precompute_dx_dy_offsets(dx, dy, offsets, wr, hr, sampling_policy, is_align_corners_used);
                break;
            }
            case InterpolationPolicy::AREA:
            {
                break;
            }
            default:
                ARM_COMPUTE_ERROR("Unsupported interpolation mode");
        }
    }
}

void CpuScale::run(ITensorPack &tensors)
{
    ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
    prepare(tensors);
    NEScheduler::get().schedule_op(_kernel.get(), Window::DimY, _kernel->window(), tensors);
}
} // namespace cpu
} // namespace arm_compute