aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.cpp
blob: d9b2bff810c13cf8c5179d0a68380a9e13cf1093 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 * Copyright (c) 2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "arm_compute/runtime/NEON/functions/assembly/NEDepthwiseConvolutionAssemblyDispatch.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/kernels/convolution/depthwise/depthwise_quantized.hpp"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/InfoHelpers.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

#include "arm_compute/runtime/NEON/NEScheduler.h"

namespace arm_compute
{
namespace
{
std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensor      *input,
                                                                   const ITensor      *weights,
                                                                   ITensor            *output,
                                                                   PadStrideInfo       conv_info,
                                                                   ActivationLayerInfo act_info)
{
    const DataType    data_type = input->info()->data_type();
    const TensorShape shape     = input->info()->tensor_shape();

    const int n_batches      = shape[3];
    const int in_rows        = shape.z();
    const int in_cols        = shape.y();
    const int n_channels     = shape.x();
    const int padding_top    = conv_info.pad_top();
    const int padding_left   = conv_info.pad_left();
    const int padding_bottom = conv_info.pad_bottom();
    const int padding_right  = conv_info.pad_right();

    const unsigned int stride_x = conv_info.stride().first;

    // Map activation function
    neon_convolution_kernels::ActivationFunction activation = neon_convolution_kernels::ActivationFunction::None;
    if(arm_compute::utils::info_helpers::is_relu(act_info))
    {
        activation = neon_convolution_kernels::ActivationFunction::ReLU;
    }
    else if(arm_compute::utils::info_helpers::is_relu6(act_info))
    {
        activation = neon_convolution_kernels::ActivationFunction::ReLU6;
    }

    // Create quantized convolver
    if(data_type == DataType::QASYMM8)
    {
        const QuantizationInfo &input_qinfo   = input->info()->quantization_info();
        const QuantizationInfo &weights_qinfo = weights->info()->quantization_info();
        const QuantizationInfo &output_qinfo  = output->info()->quantization_info();

        // Check that quantization info are in the range [0, 255]
        ARM_COMPUTE_ERROR_ON(input_qinfo.offset < 0 || input_qinfo.offset > 255);
        ARM_COMPUTE_ERROR_ON(weights_qinfo.offset < 0 || weights_qinfo.offset > 255);
        ARM_COMPUTE_ERROR_ON(output_qinfo.offset < 0 || output_qinfo.offset > 255);
        const qasymm8::QAsymm8Params iqinfo{ static_cast<uint8_t>(input_qinfo.offset), input_qinfo.scale };
        const qasymm8::QAsymm8Params wqinfo{ static_cast<uint8_t>(weights_qinfo.offset), weights_qinfo.scale };
        const qasymm8::QAsymm8Params oqinfo{ static_cast<uint8_t>(output_qinfo.offset), output_qinfo.scale };

        // Calculate rescale parameters
        const float fmultipler  = iqinfo.scale * wqinfo.scale / oqinfo.scale;
        int         qmultiplier = 0;
        int         qshift      = 0;
        quantization::calculate_quantized_multiplier_less_than_one(fmultipler, &qmultiplier, &qshift);
        qasymm8::QAsymm8RescaleParams rescale_params(qshift, qmultiplier, fmultipler);

        // Create convolver
        switch(stride_x)
        {
            case 1:
                return arm_compute::support::cpp14::make_unique<depthwise::QAsymm8DepthwiseConvolution<2, 2, 3, 3, 1, 1>>(
                           n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
            case 2:
                return arm_compute::support::cpp14::make_unique<depthwise::QAsymm8DepthwiseConvolution<2, 2, 3, 3, 2, 2>>(
                           n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
            default:
                return nullptr;
        }
    }
    else
    {
        // Create float convolver
        switch(data_type)
        {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                switch(stride_x)
                {
                    case 1:
                        return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<3, 3, 3, 3, 1, 1, float16_t, float16_t, float16_t>>(
                                   n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right);
                    case 2:
                        return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<3, 3, 3, 3, 2, 2, float16_t, float16_t, float16_t>>(
                                   n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right);
                    default:
                        return nullptr;
                }
                break;
            }
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F32:
            {
                switch(stride_x)
                {
                    case 1:
                        return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<4, 4, 3, 3, 1, 1, float, float, float>>(
                                   n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right);
                    case 2:
                        return arm_compute::support::cpp14::make_unique<depthwise::DepthwiseConvolution<3, 3, 3, 3, 2, 2, float, float, float>>(
                                   n_batches, in_rows, in_cols, n_channels, activation, padding_top, padding_left, padding_bottom, padding_right);
                    default:
                        return nullptr;
                }
                break;
            }
            default:
                return nullptr;
        }
    }
}
} // namespace

#ifndef DOXYGEN_SKIP_THIS
NEDepthwiseConvolutionAssemblyDispatch::NEDepthwiseConvolutionAssemblyDispatch(std::shared_ptr<arm_compute::IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _input(nullptr), _weights(nullptr), _bias(nullptr), _output(nullptr), _packed_weights(), _workspace(), _is_prepared(false), _dwc_assembly_kernel(nullptr),
      _dwc_acl_kernel()
{
}
#endif /* DOXYGEN_SKIP_THIS */

void NEDepthwiseConvolutionAssemblyDispatch::configure(const ITensor             *input,
                                                       const ITensor             *weights,
                                                       const ITensor             *bias,
                                                       ITensor                   *output,
                                                       const PadStrideInfo       &conv_info,
                                                       unsigned int               depth_multiplier,
                                                       const ActivationLayerInfo &act_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_UNUSED(depth_multiplier);
    ARM_COMPUTE_ERROR_THROW_ON(NEDepthwiseConvolutionAssemblyDispatch::validate(input->info(),
                                                                                weights->info(),
                                                                                bias != nullptr ? bias->info() : nullptr,
                                                                                output->info(),
                                                                                conv_info,
                                                                                depth_multiplier,
                                                                                act_info));

    // Output auto inizialitation if not yet initialized
    const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier);
    auto_init_if_empty(*output->info(), input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));

    _input       = input;
    _weights     = weights;
    _bias        = bias;
    _output      = output;
    _is_prepared = false;

    // Create convolver
    _dwc_assembly_kernel = create_convolver(input, weights, output, conv_info, act_info);
    ARM_COMPUTE_ERROR_ON(_dwc_assembly_kernel == nullptr);

    // Create assembly kernel wrapper
    _dwc_acl_kernel.configure(_dwc_assembly_kernel.get());

    constexpr size_t alignment = 128;

    // Create workspace
    const unsigned int num_threads    = NEScheduler::get().num_threads();
    const size_t       workspace_size = _dwc_assembly_kernel->get_working_space_size(num_threads);
    ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "Workspace size cannot be 0 !");
    _workspace.allocator()->init(TensorInfo(TensorShape{ workspace_size }, 1, DataType::S8), alignment);
    _memory_group.manage(&_workspace);
    _workspace.allocator()->allocate();

    // Create packing tensor
    const size_t pack_tensor_size = _dwc_assembly_kernel->get_packed_params_size();
    ARM_COMPUTE_ERROR_ON_MSG(pack_tensor_size == 0, "Pack tensor size cannot be 0 !");
    _packed_weights.allocator()->init(TensorInfo(TensorShape{ pack_tensor_size }, 1, DataType::S8), alignment);
}

Status NEDepthwiseConvolutionAssemblyDispatch::validate(const ITensorInfo         *input,
                                                        const ITensorInfo         *weights,
                                                        const ITensorInfo         *bias,
                                                        const ITensorInfo         *output,
                                                        const PadStrideInfo       &conv_info,
                                                        unsigned int               depth_multiplier,
                                                        const ActivationLayerInfo &act_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);

    const auto       strides     = conv_info.stride();
    const DataLayout data_layout = input->data_layout();
    unsigned int     width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    unsigned int     height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != 3 || weights->dimension(height_idx) != 3);
    ARM_COMPUTE_RETURN_ERROR_ON(!((strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2))));
    ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier != 1);

    const bool is_relu  = arm_compute::utils::info_helpers::is_relu(act_info);
    const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info);
    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !(is_relu || is_relu6));

    // Check bias
    if(bias != nullptr)
    {
        unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
        ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
        ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != weights->dimension(channel_idx));
    }

    // Check output
    if(output->total_size() != 0)
    {
        const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}

bool NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(const ITensorInfo *input,
                                                                    const ITensorInfo *weights,
                                                                    PadStrideInfo      conv_info,
                                                                    unsigned int       depth_multiplier)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);

    // Reshape input shape if in NHWC format
    const DataLayout data_layout = input->data_layout();
    TensorShape      in_shape{ input->tensor_shape() };
    if(data_layout == DataLayout::NHWC)
    {
        in_shape.set(Window::DimX, input->tensor_shape().y());
        in_shape.set(Window::DimY, input->tensor_shape().z());
        in_shape.set(Window::DimZ, input->tensor_shape().x());
    }

    // Check data type
    const DataType data_type          = weights->data_type();
    bool           is_data_type_valid = is_data_type_float(data_type) || is_data_type_quantized_asymmetric(data_type);

    // Check weighs size
    const unsigned int width_idx         = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx        = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    bool               weights_supported = (weights->dimension(width_idx) == 3) && (weights->dimension(height_idx) == 3);

    // Check for supported strides
    const auto &strides           = conv_info.stride();
    bool        supported_strides = (strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2));

    // Check for supported padding
    const auto    pad_top           = conv_info.pad_top();
    const auto    pad_right         = conv_info.pad_right();
    const auto    pad_bottom        = conv_info.pad_bottom();
    const auto    pad_left          = conv_info.pad_left();
    PadStrideInfo same_pad          = calculate_same_pad(in_shape, TensorShape(3U, 3U), conv_info);
    bool          is_same_padding   = (pad_top == same_pad.pad_top()) && (pad_right == same_pad.pad_right()) && (pad_bottom == same_pad.pad_bottom()) && (pad_left == same_pad.pad_left());
    bool          is_valid_padding  = (pad_top == 0) && (pad_right == 0) && (pad_bottom == 0) && (pad_left == 0);
    bool          supported_padding = is_same_padding || is_valid_padding;

    return is_data_type_valid && weights_supported && supported_strides && supported_padding && (depth_multiplier == 1);
}

void NEDepthwiseConvolutionAssemblyDispatch::run()
{
    // Prepare assembly kernel
    prepare();

    MemoryGroupResourceScope scope_mg(_memory_group);

    // Setup inputs/outputs
    ARM_COMPUTE_ERROR_ON(_workspace.buffer() == nullptr);
    _dwc_assembly_kernel->set_working_space(static_cast<void *>(_workspace.buffer()));

    ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
    const int   input_element_size = _input->info()->element_size();
    const int   input_batch_stride = _input->info()->strides_in_bytes()[3] / input_element_size;
    const int   input_row_stride   = _input->info()->strides_in_bytes().z() / input_element_size;
    const int   input_col_stride   = _input->info()->strides_in_bytes().y() / input_element_size;
    const void *input_ptr          = _input->buffer() + _input->info()->offset_first_element_in_bytes();
    _dwc_assembly_kernel->set_input(input_ptr, input_batch_stride, input_row_stride, input_col_stride);

    ARM_COMPUTE_ERROR_ON(_output->buffer() == nullptr);
    const int output_element_size = _output->info()->element_size();
    const int output_batch_stride = _output->info()->strides_in_bytes()[3] / output_element_size;
    const int output_row_stride   = _output->info()->strides_in_bytes().z() / output_element_size;
    const int output_col_stride   = _output->info()->strides_in_bytes().y() / output_element_size;
    void     *output_ptr          = _output->buffer() + _output->info()->offset_first_element_in_bytes();
    _dwc_assembly_kernel->set_output(output_ptr, output_batch_stride, output_row_stride, output_col_stride);

    // Schedule assembly kernel
    NEScheduler::get().schedule(&_dwc_acl_kernel, Window::DimX);
}

void NEDepthwiseConvolutionAssemblyDispatch::prepare()
{
    if(!_is_prepared)
    {
        _packed_weights.allocator()->allocate();
        ARM_COMPUTE_ERROR_ON(_packed_weights.buffer() == nullptr);

        // Pack weights and bias
        const int weights_element_size = _weights->info()->element_size();
        const int weights_row_stride   = _weights->info()->strides_in_bytes().z() / weights_element_size;
        const int weights_col_stride   = _weights->info()->strides_in_bytes().y() / weights_element_size;
        _dwc_assembly_kernel->pack_params(_packed_weights.buffer(),
                                          _weights->buffer() + _weights->info()->offset_first_element_in_bytes(),
                                          weights_row_stride,
                                          weights_col_stride,
                                          (_bias != nullptr) ? _bias->buffer() : nullptr);
        _dwc_assembly_kernel->set_packed_params_buffer(_packed_weights.buffer());

        _weights->mark_as_unused();
        if(_bias != nullptr)
        {
            _bias->mark_as_unused();
        }
        _is_prepared = true;
    }
}
} // namespace arm_compute