aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NESoftmaxLayer.cpp
blob: 79a94961d82873df310d1e486bc86e6a257b2033 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/kernels/NESoftmaxLayerKernel.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "utils/TypePrinter.h"

#include <cfloat>

namespace arm_compute
{
NESoftmaxLayer::NESoftmaxLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _max_kernel(), _softmax_kernel(), _flat_or_reshape_kernel_ptr(nullptr), _fill_border_kernel(), _reshape_kernel(), _max(), _tmp(), _input_flattened(),
      _output_flattened(), _needs_flattening(false)
{
}

void NESoftmaxLayer::configure_reshape_input_kernel(const ITensor *input, const ITensor *output, size_t axis)
{
    // Flatten the input
    const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input->info(), axis);

    // Initialize the flat input
    _input_flattened.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));

    // If we need to flatten the input, we can use NEFlattenKernel or NEReshapeKernel
    // If flattening on the third axes, we use NEFlattenKernel.
    // In all other cases we have to use NEReshapeKernel
    if(axis != 3)
    {
        auto reshape_kernel_ptr = support::cpp14::make_unique<NEReshapeLayerKernel>();
        reshape_kernel_ptr->configure(input, &_input_flattened);
        _flat_or_reshape_kernel_ptr = std::move(reshape_kernel_ptr);
    }
    else
    {
        auto flatten_kernel_ptr = support::cpp14::make_unique<NEFlattenLayerKernel>();
        flatten_kernel_ptr->configure(input, &_input_flattened);
        _flat_or_reshape_kernel_ptr = std::move(flatten_kernel_ptr);
    }

    // We need to init the output tensor here. Indeed, the reshape kernel expects
    // both tensors to be already initialized
    auto_init_if_empty(*output->info(), *input->info()->clone());
}

void NESoftmaxLayer::configure(ITensor *input, ITensor *output, float beta, size_t axis)
{
    // Perform validation step
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayer::validate(input->info(), output->info(), beta, axis));

    // We don't need flattening only in the case the input is 2D and axis is 1
    _needs_flattening = axis != 1;

    // If we are dealing with a 4D tensor, we will:
    // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor
    // - Execute all the pipeline (reduction + normalization) on the flattened tensor
    // - Reshape the flattened output into the real output
    if(_needs_flattening)
    {
        // Add to the memory manager _input_flattened
        _memory_group.manage(&_input_flattened);

        // Configure  _flatten_kernel and _input_flattened
        configure_reshape_input_kernel(input, output, axis);
    }

    // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case)
    // or it is the original input case (2D case)
    ITensor *input_2D = (_needs_flattening ? &_input_flattened : input);

    // Create intermediate tensors shapes
    const TensorInfo input_info    = input_2D->info()->clone()->reset_padding().set_is_resizable(true);
    DataType         tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::F32 : input_2D->info()->data_type();
    TensorInfo       tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));

    // Init intermediate tensors
    TensorShape max_sum_shape = input_2D->info()->tensor_shape();
    max_sum_shape.set(0, 1);
    _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
    _tmp.allocator()->init(tensor_info_tmp);

    // Manage intermediate buffers
    _memory_group.manage(&_max);
    _memory_group.manage(&_tmp);

    // Configure Kernels
    _max_kernel.configure(input_2D, &_max);
    if(_needs_flattening)
    {
        // Add to the memory manager _output_flattened
        _memory_group.manage(&_output_flattened);

        // The normalization kernel stores the result in a flat output tensor
        _softmax_kernel.configure(input_2D, &_max, &_output_flattened, beta, &_tmp);
        _input_flattened.allocator()->allocate();

        // Reshape the flat output into the requested (4D) output
        _reshape_kernel.configure(&_output_flattened, output);

        // Allocate the intermediate flat tensors
        _output_flattened.allocator()->allocate();
    }
    else
    {
        // Softmax 2D case
        _fill_border_kernel.configure(input_2D, _max_kernel.border_size(), BorderMode::REPLICATE);
        _softmax_kernel.configure(input_2D, &_max, output, beta, &_tmp);
    }

    // Allocate intermediate buffers
    _max.allocator()->allocate();
    _tmp.allocator()->allocate();
}

Status NESoftmaxLayer::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, size_t axis)
{
    // Perform validation step
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
    ARM_COMPUTE_UNUSED(beta);
    ARM_COMPUTE_RETURN_ERROR_ON(axis < 1 || input->num_dimensions() < axis);

    // Create intermediate tensor info
    DataType         tmp_data_type = input->data_type();
    const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));

    TensorShape max_sum_shape = input->tensor_shape();
    max_sum_shape.set(0, 1);
    const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true));
    const TensorInfo dont_care;

    const bool needs_flattening = (axis != 1);

    if(needs_flattening)
    {
        const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input, axis);
        TensorInfo        tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));

        if(axis != 3)
        {
            ARM_COMPUTE_RETURN_ON_ERROR(NEReshapeLayerKernel::validate(input, &tensor_info_flat));
        }
        else
        {
            ARM_COMPUTE_RETURN_ON_ERROR(NEFlattenLayerKernel::validate(input, &tensor_info_flat));
        }
    }

    ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum));
    ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DSoftmaxKernel::validate(&tensor_info_tmp, &tensor_info_max_sum, output, beta, &dont_care));

    return Status{};
}

void NESoftmaxLayer::run()
{
    MemoryGroupResourceScope scope_mg(_memory_group);

    if(_needs_flattening)
    {
        NEScheduler::get().schedule(_flat_or_reshape_kernel_ptr.get(), Window::DimY);
    }

    NEScheduler::get().schedule(&_fill_border_kernel, Window::DimY);
    NEScheduler::get().schedule(&_max_kernel, Window::DimY);
    NEScheduler::get().schedule(&_softmax_kernel, Window::DimY);

    if(_needs_flattening)
    {
        NEScheduler::get().schedule(&_reshape_kernel, Window::DimY);
    }
}
} // namespace arm_compute