aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEScale.cpp
blob: 424049f24a5f7f69e514f313bdcecd724e194873 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * Copyright (c) 2016-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEScale.h"

#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/Rounding.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/runtime/TensorAllocator.h"

#include "src/core/utils/ScaleUtils.h"

#include <cmath>
#include <cstddef>
#include <utility>

namespace arm_compute
{
namespace
{
void precompute_dx_dy_offsets(ITensor *dx, ITensor *dy, ITensor *offsets, float wr, float hr, size_t input_element_size, SamplingPolicy sampling_policy, bool align_corners)
{
    ARM_COMPUTE_ERROR_ON(nullptr == offsets);
    ARM_COMPUTE_UNUSED(sampling_policy);
    float sampling_offset = 0.0f;
    if(sampling_policy == SamplingPolicy::CENTER)
    {
        sampling_offset = 0.5f;
    }

    Window win;
    win.set(Window::DimX, Window::Dimension(0, offsets->info()->dimension(0), 1));
    win.set(Window::DimY, Window::Dimension(0, offsets->info()->dimension(1), 1));

    if(dx != nullptr && dy != nullptr)
    {
        // Pre-compute the offset and pixel's distance for BILINEAR interpolation
        Iterator offsets_it(offsets, win);
        Iterator dx_it(dx, win);
        Iterator dy_it(dy, win);

        execute_window_loop(win, [&](const Coordinates & id)
        {
            const float in_x  = (id.x() + sampling_offset) * wr - sampling_offset;
            const float in_y  = (id.y() + sampling_offset) * hr - sampling_offset;
            const int   in_xi = std::floor(in_x);
            const int   in_yi = std::floor(in_y);

            *reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi * static_cast<int>(input_element_size);
            *reinterpret_cast<float *>(dx_it.ptr())        = in_x - in_xi;
            *reinterpret_cast<float *>(dy_it.ptr())        = in_y - in_yi;
        },
        offsets_it, dx_it, dy_it);
    }
    else
    {
        // Pre-compute the offset for NEAREST interpolation
        Iterator offsets_it(offsets, win);

        execute_window_loop(win, [&](const Coordinates & id)
        {
            const float float_in_xi = (id.x() + sampling_offset) * wr;
            const auto  in_xi       = static_cast<size_t>(align_corners ? arm_compute::utils::rounding::round_half_away_from_zero(float_in_xi) : std::floor(float_in_xi));

            *reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi * input_element_size;
        },
        offsets_it);
    }
}
} // namespace

NEScale::NEScale() // NOLINT
    : _offsets(),
      _dx(),
      _dy(),
      _scale_kernel(),
      _border_handler(),
      _use_padding(true)
{
}

void NEScale::configure(ITensor *input, ITensor *output, const ScaleKernelInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(NEScale::validate(input->info(), output->info(), info));

    _use_padding                     = info.use_padding;
    const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy);

    // Get data layout and width/height indices
    const DataLayout data_layout = input->info()->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    // Get the tensor shape
    const TensorShape shape(output->info()->dimension(idx_width), output->info()->dimension(idx_height));

    // Compute the ratio between source width/height and destination width/height
    const auto wr = arm_compute::scale_utils::calculate_resize_ratio(input->info()->dimension(idx_width), output->info()->dimension(idx_width), is_align_corners_used);
    const auto hr = arm_compute::scale_utils::calculate_resize_ratio(input->info()->dimension(idx_height), output->info()->dimension(idx_height), is_align_corners_used);

    // Get the element size of the input image
    const size_t input_element_size = input->info()->element_size();

    // Area interpolation behaves as Nearest Neighbour in case of up-sampling
    const auto policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy;

    switch(policy_to_use)
    {
        case InterpolationPolicy::NEAREST_NEIGHBOR:
        {
            TensorInfo tensor_info_offsets(shape, Format::S32);
            _offsets.allocator()->init(tensor_info_offsets);

            _scale_kernel.configure(input, nullptr, nullptr, &_offsets, output, info);

            // Allocate once the configure methods have been called
            _offsets.allocator()->allocate();

            // Pre-compute offsets for nearest interpolation
            precompute_dx_dy_offsets(nullptr, nullptr, &_offsets, wr, hr, input_element_size, info.sampling_policy, is_align_corners_used);
            break;
        }
        case InterpolationPolicy::BILINEAR:
        {
            TensorInfo tensor_info_offsets(shape, Format::S32);
            TensorInfo tensor_info_dxdy(shape, Format::F32);

            _offsets.allocator()->init(tensor_info_offsets);
            _dx.allocator()->init(tensor_info_dxdy);
            _dy.allocator()->init(tensor_info_dxdy);

            _scale_kernel.configure(input, &_dx, &_dy, &_offsets, output, info);

            // Allocate once the configure methods have been called
            _offsets.allocator()->allocate();
            _dx.allocator()->allocate();
            _dy.allocator()->allocate();

            // Pre-compute dx, dy and offsets for bilinear interpolation
            precompute_dx_dy_offsets(&_dx, &_dy, &_offsets, wr, hr, input_element_size, info.sampling_policy, is_align_corners_used);
            break;
        }
        case InterpolationPolicy::AREA:
        {
            _scale_kernel.configure(input, nullptr, nullptr, nullptr, output, info);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("Unsupported interpolation mode");
    }
    if(info.use_padding)
    {
        _border_handler.configure(input, _scale_kernel.border_size(), info.border_mode, info.constant_border_value);
    }
}

void NEScale::configure(ITensor *input, ITensor *output, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, SamplingPolicy sampling_policy, bool use_padding,
                        bool align_corners)
{
    configure(input, output, ScaleKernelInfo{ policy, border_mode, constant_border_value, sampling_policy, use_padding, align_corners });
}

Status NEScale::validate(const ITensorInfo *input, const ITensorInfo *output, const ScaleKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);

    ITensorInfo *offsets = nullptr;
    ITensorInfo *dx      = nullptr;
    ITensorInfo *dy      = nullptr;

    // Get data layout and width/height indices
    const DataLayout data_layout = input->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    // Get the tensor shape of auxilary buffers
    const TensorShape shape(output->dimension(idx_width), output->dimension(idx_height));

    TensorInfo tensor_info_offsets(shape, Format::S32);
    TensorInfo tensor_info_dx(shape, Format::F32);
    TensorInfo tensor_info_dy(shape, Format::F32);

    switch(info.interpolation_policy)
    {
        case InterpolationPolicy::NEAREST_NEIGHBOR:
            offsets = &tensor_info_offsets;
            break;
        case InterpolationPolicy::BILINEAR:
            offsets = &tensor_info_offsets;
            dx      = &tensor_info_dx;
            dy      = &tensor_info_dy;
            break;
        default:
            break;
    }

    ARM_COMPUTE_RETURN_ON_ERROR(NEScaleKernel::validate(input->clone().get(), dx, dy, offsets, output->clone().get(), info));
    return Status{};
}

Status NEScale::validate(const ITensorInfo *input, const ITensorInfo *output, InterpolationPolicy policy,
                         BorderMode border_mode, PixelValue constant_border_value, SamplingPolicy sampling_policy, bool use_padding, bool align_corners)
{
    ARM_COMPUTE_RETURN_ON_ERROR(NEScale::validate(input, output, ScaleKernelInfo{ policy, border_mode, constant_border_value, sampling_policy, use_padding, align_corners }));
    return Status{};
}

void NEScale::run()
{
    if(_use_padding)
    {
        NEScheduler::get().schedule(&_border_handler, Window::DimZ);
    }
    NEScheduler::get().schedule(&_scale_kernel, Window::DimY);
}
} // namespace arm_compute