aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEDepthwiseConvolutionLayer.cpp
blob: 83c3e217f31c80731caeca274b504506915e2af7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"

using namespace arm_compute;
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;

NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3()
    : _dwc_kernel(), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(), _accumulator(), _input_nhwc(), _weights_hwio(), _output_nhwc(), _has_bias(false),
      _is_quantized(false), _is_optimized(false), _are_weights_reshaped(false), _is_nchw(true), _is_first_run(true)
{
}

void NEDepthwiseConvolutionLayer3x3::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);

    PixelValue zero_value(0.f);

    _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
    _has_bias     = biases != nullptr;
    _is_optimized = NEDepthwiseConvolutionLayer3x3Kernel::is_optimized_execution_possible(input->info()->tensor_shape(),
                                                                                          conv_info,
                                                                                          input->info()->data_type(),
                                                                                          depth_multiplier,
                                                                                          input->info()->data_layout());
    _are_weights_reshaped = false;
    _is_nchw              = input->info()->data_layout() == DataLayout::NCHW;

    ARM_COMPUTE_ERROR_ON(!_is_optimized && !_is_nchw);

    if(_is_optimized)
    {
        if(_is_nchw)
        {
            // Configure the function to transform the input tensor from NCHW -> NHWC
            _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U));

            // Configure the function to transform the weights tensor from IHW -> HWI
            _permute_weights.configure(weights, &_weights_hwio, PermutationVector(2U, 0U, 1U));

            // Configure optimized depthwise
            _dwc_kernel.configure(&_input_nhwc, &_weights_hwio, &_output_nhwc, conv_info, depth_multiplier, DataLayout::NHWC);

            // Configure the function to transform the convoluted output to ACL's native ordering format NCHW
            _permute_output.configure(&_output_nhwc, output, PermutationVector(1U, 2U, 0U));

            // Allocate tensors
            _input_nhwc.allocator()->allocate();
            _weights_hwio.allocator()->allocate();
            _output_nhwc.allocator()->allocate();
        }
        else
        {
            _dwc_kernel.configure(input, weights, output, conv_info, depth_multiplier, DataLayout::NHWC);
        }
    }
    else
    {
        // Allocate the intermediate accumulator tensor in case of fixed point input
        if(_is_quantized)
        {
            _accumulator.allocator()->init(TensorInfo(output->info()->tensor_shape(), 1, DataType::S32));
            _accumulator.info()->set_quantization_info(input->info()->quantization_info());
            zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().offset));
        }

        // Configure depthwise convolution kernel
        _dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier);

        // Configure border handler
        _border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
    }

    // Configure biases accumulation
    if(_has_bias || _is_quantized)
    {
        if(_is_quantized)
        {
            const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();

            float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
            int   output_multiplier, output_shift;
            quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
            _output_stage_kernel.configure(&_accumulator, biases, output, output_multiplier, output_shift, output_quant_info.offset);
            _accumulator.allocator()->allocate();
        }
        else
        {
            _output_stage_kernel.configure(output, biases);
        }
    }
}

void NEDepthwiseConvolutionLayer3x3::run()
{
    if(_is_first_run && _is_optimized)
    {
        _is_first_run = false;
        // Create convolver (deferred)
        _dwc_kernel.generate_convolver();
    }

    // Permute weights in HWIO format if the optimized kernel will be executedd
    if(!_are_weights_reshaped && _is_optimized && _is_nchw)
    {
        _are_weights_reshaped = true;
        _permute_weights.run();
    }

    // Handle input
    if(_is_optimized)
    {
        if(_is_nchw)
        {
            // Permute input to NHWC format execution
            _permute_input.run();
        }
    }
    else
    {
        // Fill border in NCHW format execution
        NEScheduler::get().schedule(&_border_handler, Window::DimX);
    }

    // Execute depthwise convolution
    NEScheduler::get().schedule(&_dwc_kernel, Window::DimX);

    // Permute output to ACL's native NCHW format in case of NHWC execution
    if(_is_optimized && _is_nchw)
    {
        _permute_output.run();
    }

    // Add biases
    if(_has_bias || _is_quantized)
    {
        NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
    }
}

NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer()
    : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(),
      _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _original_weights(nullptr)
{
}

void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_ERROR_ON((input->info()->dimension(2) * depth_multiplier) != weights->info()->dimension(2));

    const size_t weights_w = weights->info()->dimension(0);
    const size_t weights_h = weights->info()->dimension(1);
    const size_t weights_z = weights->info()->dimension(2);

    _is_quantized     = is_data_type_quantized_asymmetric(input->info()->data_type());
    _is_prepared      = false;
    _original_weights = weights;

    // Should bias be appended ?
    bool append_bias = (biases != nullptr) && !_is_quantized;

    // Calculate output shape
    TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier);

    // Output auto inizialitation if not yet initialized
    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);

    // Output width and height
    const unsigned int conv_w = output_shape.x();
    const unsigned int conv_h = output_shape.y();

    // Set up intermediate tensors
    const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0);
    const size_t conv_size  = conv_w * conv_h;

    // Im2Col configuration
    TensorShape shape_im2col = input->info()->tensor_shape();
    shape_im2col.set(0, patch_size);
    shape_im2col.set(1, conv_size);
    shape_im2col.set(2, weights_z);
    _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
    _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier);

    // Weights reshape configuration
    const TensorShape shape_weights_reshape(patch_size, weights_z);
    _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
    _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr);

    // GEMV configuration
    DataType    v2mm_dt        = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type();
    TensorShape shape_v2mm_out = input->info()->tensor_shape();
    shape_v2mm_out.set(0, conv_size * weights_z);
    shape_v2mm_out.set(1, 1);
    shape_v2mm_out.set(2, 1);
    _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
    _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
    _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
    _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h);

    // Output staged configuration
    if(_is_quantized)
    {
        const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();

        float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
        int   output_multiplier, output_shift;
        quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
        _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset);
        _output_reshaped.allocator()->allocate();
    }

    // Fill borders on inputs
    PixelValue zero_in(static_cast<int32_t>(0));
    PixelValue zero_w(static_cast<int32_t>(0));
    if(_is_quantized)
    {
        zero_in = PixelValue(static_cast<int32_t>(input->info()->quantization_info().offset));
        zero_w  = PixelValue(static_cast<int32_t>(weights->info()->quantization_info().offset));
    }
    BorderSize border_size = _v2mm_kernel.border_size();
    _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in);

    border_size.bottom = 0;
    _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w);

    // Allocate intermediate tensors
    _input_reshaped.allocator()->allocate();
    _v2mm_output.allocator()->allocate();
}

void NEDepthwiseConvolutionLayer::run()
{
    prepare();

    NEScheduler::get().schedule(&_im2col_kernel, Window::DimX);
    NEScheduler::get().schedule(&_v2mm_input_fill_border, Window::DimX);
    NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX);
    NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX);
    if(_is_quantized)
    {
        NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
    }
}

void NEDepthwiseConvolutionLayer::prepare()
{
    if(!_is_prepared)
    {
        ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

        // Run reshape and mark original weights as unused
        _weights_reshaped.allocator()->allocate();
        NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX);
        NEScheduler::get().schedule(&_v2mm_weights_fill_border, Window::DimX);
        _original_weights->mark_as_unused();

        _is_prepared = true;
    }
}