aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEDepthwiseConvolutionLayer.cpp
blob: 3bb69b1ffc2967ad9ef0794d9de6b977c5cd987f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"

#include "arm_compute/core/utils/misc/InfoHelpers.h"

using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;

namespace arm_compute
{
NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(memory_manager), _dwc_kernel(), _dwc_optimized_func(memory_manager), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(),
      _activationlayer_function(), _accumulator(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _has_bias(false), _is_quantized(false), _is_optimized(false),
      _is_nchw(true), _permute(false), _is_activationlayer_enabled(false), _is_prepared(false)
{
}

void NEDepthwiseConvolutionLayer3x3::configure_generic(ITensor                   *input,
                                                       const ITensor             *weights,
                                                       const ITensor             *biases,
                                                       ITensor                   *output,
                                                       const PadStrideInfo       &conv_info,
                                                       unsigned int               depth_multiplier,
                                                       const ActivationLayerInfo &act_info,
                                                       const Size2D              &dilation)
{
    ARM_COMPUTE_UNUSED(act_info);

    PixelValue zero_value(0.f);

    // Initialize the intermediate accumulator tensor in case of quantized input
    if(_is_quantized)
    {
        TensorShape accum_shape  = output->info()->tensor_shape();
        DataLayout  accum_layout = output->info()->data_layout();
        if(!_is_nchw)
        {
            permute(accum_shape, PermutationVector(1U, 2U, 0U));
            accum_layout = DataLayout::NCHW;
        }

        _memory_group.manage(&_accumulator);
        _accumulator.allocator()->init(TensorInfo(accum_shape, 1, DataType::S32, output->info()->quantization_info()));
        _accumulator.info()->set_data_layout(accum_layout);
        zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().offset));
    }

    if(!_is_nchw)
    {
        _memory_group.manage(&_permuted_input);
        _memory_group.manage(&_permuted_output);

        // Configure the function to transform the input tensor from NHWC -> NCHW
        _permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
        _permuted_input.info()->set_data_layout(DataLayout::NCHW);

        // Configure the function to transform the weights tensor from HWI -> IHW
        _permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
        _permuted_weights.info()->set_data_layout(DataLayout::NCHW);

        // Configure depthwise
        _dwc_kernel.configure(&_permuted_input, &_permuted_weights, (_is_quantized) ? &_accumulator : &_permuted_output, conv_info, depth_multiplier, dilation);

        // Configure border handler
        _border_handler.configure(&_permuted_input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);

        // Allocate tensors
        _permuted_input.allocator()->allocate();
    }
    else
    {
        // Configure depthwise convolution kernel
        _dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier, dilation);

        // Configure border handler
        _border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
    }

    // Configure biases accumulation
    if(_is_quantized)
    {
        const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();

        float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
        int   output_multiplier;
        int   output_shift;
        quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
        _output_stage_kernel.configure(&_accumulator, biases, _is_nchw ? output : &_permuted_output, output_multiplier, output_shift, output_quant_info.offset);
        _accumulator.allocator()->allocate();
    }
    else if(_has_bias)
    {
        _output_stage_kernel.configure(_is_nchw ? output : &_permuted_output, biases);
    }

    // Permute output
    if(!_is_nchw)
    {
        // Configure the function to transform the convoluted output to NHWC
        _permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
        _permuted_output.allocator()->allocate();
    }
}

void NEDepthwiseConvolutionLayer3x3::configure_optimized(const ITensor             *input,
                                                         const ITensor             *weights,
                                                         const ITensor             *biases,
                                                         ITensor                   *output,
                                                         const PadStrideInfo       &conv_info,
                                                         unsigned int               depth_multiplier,
                                                         const ActivationLayerInfo &act_info)
{
    ActivationLayerInfo act_info_to_use = ActivationLayerInfo();
    const bool          is_relu         = arm_compute::utils::info_helpers::is_relu(act_info);
    const bool          is_relu6        = arm_compute::utils::info_helpers::is_relu6(act_info);
    _is_activationlayer_enabled         = act_info.enabled() && !(is_relu || is_relu6);
    if(!_is_activationlayer_enabled)
    {
        act_info_to_use = act_info;
    }

    if(_is_nchw)
    {
        _memory_group.manage(&_permuted_input);
        _memory_group.manage(&_permuted_output);

        // Configure the function to transform the input tensor from NCHW -> NHWC
        _permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
        _permuted_input.info()->set_data_layout(DataLayout::NHWC);

        // Configure the function to transform the weights tensor from IHW -> HWI
        _permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
        _permuted_weights.info()->set_data_layout(DataLayout::NHWC);

        // Configure optimized depthwise
        _dwc_optimized_func.configure(&_permuted_input, &_permuted_weights, biases, &_permuted_output, conv_info, depth_multiplier, act_info_to_use);

        // Configure the function to transform the convoluted output to ACL's native ordering format NCHW
        _permuted_output.info()->set_data_layout(DataLayout::NHWC);
        _permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U));

        // Allocate tensors
        _permuted_input.allocator()->allocate();
        _permuted_output.allocator()->allocate();
    }
    else
    {
        _dwc_optimized_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info_to_use);
    }
}

void NEDepthwiseConvolutionLayer3x3::configure(ITensor       *input,
                                               const ITensor *weights,
                                               const ITensor *biases,
                                               ITensor *output, const PadStrideInfo &conv_info,
                                               unsigned int               depth_multiplier,
                                               const ActivationLayerInfo &act_info,
                                               const Size2D              &dilation)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);

    // idx_w and idx_h only used for validation
    const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_UNUSED(idx_w);
    ARM_COMPUTE_UNUSED(idx_h);

    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());

    _original_weights = weights;
    _is_quantized     = is_data_type_quantized_asymmetric(input->info()->data_type());
    _has_bias         = biases != nullptr;
    _is_optimized     = NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input->info(),
                                                                                       weights->info(),
                                                                                       conv_info,
                                                                                       depth_multiplier, dilation);
    _is_nchw                    = input->info()->data_layout() == DataLayout::NCHW;
    _permute                    = _is_optimized == _is_nchw;
    _is_prepared                = false;
    _is_activationlayer_enabled = act_info.enabled();

    // Configure appropriate pipeline
    if(_is_optimized)
    {
        configure_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info);
    }
    else
    {
        configure_generic(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
    }

    // Configure activation
    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.configure(output, nullptr, act_info);
    }
}

Status NEDepthwiseConvolutionLayer3x3::validate(const ITensorInfo         *input,
                                                const ITensorInfo         *weights,
                                                const ITensorInfo         *biases,
                                                const ITensorInfo         *output,
                                                const PadStrideInfo       &conv_info,
                                                unsigned int               depth_multiplier,
                                                const ActivationLayerInfo &act_info,
                                                const Size2D              &dilation)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
    ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1);
    const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());

    if(biases != nullptr)
    {
        const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
        ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(channel_idx));
    }

    if(!NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input, weights, conv_info, depth_multiplier, dilation))
    {
        const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
        TensorInfo accumulator  = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
        ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, is_quantized ? &accumulator : output, conv_info, depth_multiplier));

        if(is_quantized)
        {
            ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&accumulator, biases, output));
        }
    }
    else
    {
        ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionAssemblyDispatch::validate(input, weights, biases, output, conv_info, depth_multiplier));
    }

    //Validate Activation Layer
    if(act_info.enabled())
    {
        ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
    }

    return Status{};
}

void NEDepthwiseConvolutionLayer3x3::run_generic()
{
    // Fill border
    NEScheduler::get().schedule(&_border_handler, Window::DimX);

    // Execute depthwise convolution
    NEScheduler::get().schedule(&_dwc_kernel, Window::DimX);

    // Add biases
    if(_has_bias || _is_quantized)
    {
        NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
    }

    // Permute output
    if(!_is_nchw)
    {
        _permute_output.run();
    }
}

void NEDepthwiseConvolutionLayer3x3::run_optimized()
{
    // Run assembly function
    _dwc_optimized_func.run();

    // Permute output
    if(_is_nchw)
    {
        _permute_output.run();
    }
}

void NEDepthwiseConvolutionLayer3x3::run()
{
    prepare();

    MemoryGroupResourceScope scope_mg(_memory_group);

    // Permute input
    if(_permute)
    {
        _permute_input.run();
    }

    _is_optimized ? run_optimized() : run_generic();

    // Run activation
    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.run();
    }
}

void NEDepthwiseConvolutionLayer3x3::prepare()
{
    if(!_is_prepared)
    {
        // Permute weights
        if(_permute)
        {
            _permuted_weights.allocator()->allocate();
            _permute_weights.run();
            _original_weights->mark_as_unused();
        }

        // Prepare optimized function
        if(_is_optimized)
        {
            _dwc_optimized_func.prepare();
            if(!_permuted_weights.is_used())
            {
                _permuted_weights.allocator()->free();
            }
        }

        _is_prepared = true;
    }
}

NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer()
    : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _permute_input(),
      _permute_weights(), _permute_output(), _activationlayer_function(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _permuted_input(), _permuted_weights(),
      _permuted_output(), _is_prepared(false), _is_quantized(false), _is_nhwc(false), _is_activationlayer_enabled(false), _original_weights(nullptr)
{
}

void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
                                            unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
    const unsigned int channel_idx = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL);
    ARM_COMPUTE_UNUSED(channel_idx);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_ERROR_ON((input->info()->dimension(channel_idx) * depth_multiplier) != weights->info()->dimension(channel_idx));
    // idx_w and idx_h only used for validation
    const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_UNUSED(idx_w);
    ARM_COMPUTE_UNUSED(idx_h);

    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());

    _is_nhwc = input->info()->data_layout() == DataLayout::NHWC;

    ITensor       *input_to_use   = input;
    const ITensor *weights_to_use = weights;
    ITensor       *output_to_use  = output;

    if(_is_nhwc)
    {
        _permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
        _permuted_input.info()->set_data_layout(DataLayout::NCHW);
        input_to_use = &_permuted_input;

        _permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
        _permuted_weights.info()->set_data_layout(DataLayout::NCHW);
        weights_to_use = &_permuted_weights;
    }

    const size_t weights_w = weights_to_use->info()->dimension(0);
    const size_t weights_h = weights_to_use->info()->dimension(1);
    const size_t weights_z = weights_to_use->info()->dimension(2);

    _is_quantized     = is_data_type_quantized_asymmetric(input->info()->data_type());
    _is_prepared      = false;
    _original_weights = weights_to_use;

    // Should bias be appended ?
    bool append_bias = (biases != nullptr) && !_is_quantized;

    // Calculate output shape
    TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation);

    // Output auto inizialitation if not yet initialized
    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);

    if(_is_nhwc)
    {
        permute(output_shape, PermutationVector(1U, 2U, 0U));
        _permuted_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
        _permuted_output.info()->set_data_layout(DataLayout::NCHW);
        output_to_use = &_permuted_output;
    }

    // Output width and height
    const unsigned int conv_w = output_shape.x();
    const unsigned int conv_h = output_shape.y();

    // Set up intermediate tensors
    const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0);
    const size_t conv_size  = conv_w * conv_h;

    // Im2Col configuration
    TensorShape shape_im2col = input_to_use->info()->tensor_shape();
    shape_im2col.set(0, patch_size);
    shape_im2col.set(1, conv_size);
    shape_im2col.set(2, weights_z);
    _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col).set_data_layout(DataLayout::NCHW));
    _im2col_kernel.configure(input_to_use, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation);

    // Weights reshape configuration
    const TensorShape shape_weights_reshape(patch_size, weights_z);
    _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape).set_data_layout(DataLayout::NCHW));
    _weights_reshape_kernel.configure(weights_to_use, &_weights_reshaped, append_bias ? biases : nullptr);

    // GEMV configuration
    DataType    v2mm_dt        = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type();
    TensorShape shape_v2mm_out = input_to_use->info()->tensor_shape();
    shape_v2mm_out.set(0, conv_size * weights_z);
    shape_v2mm_out.set(1, 1);
    shape_v2mm_out.set(2, 1);
    _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out).set_data_layout(DataLayout::NCHW));
    _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
    _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
    _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output_to_use, conv_w, conv_h);

    // Output staged configuration
    if(_is_quantized)
    {
        const QuantizationInfo output_quant_info = output->info()->quantization_info();

        float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
        int   output_multiplier;
        int   output_shift;
        quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
        _output_stage_kernel.configure(&_output_reshaped, biases, output_to_use, output_multiplier, output_shift, output_quant_info.offset);
        _output_reshaped.allocator()->allocate();
    }

    if(_is_nhwc)
    {
        _permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));

        _permuted_input.allocator()->allocate();
        _permuted_weights.allocator()->allocate();
        _permuted_output.allocator()->allocate();
    }

    // Fill borders on inputs
    PixelValue zero_in(static_cast<int32_t>(0));
    PixelValue zero_w(static_cast<int32_t>(0));
    if(_is_quantized)
    {
        zero_in = PixelValue(static_cast<int32_t>(input->info()->quantization_info().offset));
        zero_w  = PixelValue(static_cast<int32_t>(weights->info()->quantization_info().offset));
    }
    BorderSize border_size = _v2mm_kernel.border_size();
    _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in);

    border_size.bottom = 0;
    _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w);

    // Allocate intermediate tensors
    _input_reshaped.allocator()->allocate();
    _v2mm_output.allocator()->allocate();

    //Configure Activation Layer
    _is_activationlayer_enabled = act_info.enabled();

    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.configure(output, nullptr, act_info);
    }
}

Status NEDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
                                             unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
    ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1);

    const unsigned int width_idx  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
    const unsigned int height_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);

    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) + (weights->dimension(width_idx) - 1) * (dilation.x() - 1) > input->dimension(width_idx) + conv_info.pad_left() + conv_info.pad_right());
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(height_idx) + (weights->dimension(height_idx) - 1) * (dilation.y() - 1) > input->dimension(height_idx) + conv_info.pad_top() + conv_info.pad_bottom());
    // Clone output to use auto init
    auto output_clone = output->clone();

    const ITensorInfo *input_to_use   = input;
    const ITensorInfo *weights_to_use = weights;
    const ITensorInfo *output_to_use  = output_clone.get();

    TensorShape permuted_input_shape   = input->tensor_shape();
    TensorShape permuted_weights_shape = weights->tensor_shape();
    TensorInfo  permuted_input;
    TensorInfo  permuted_weights;

    if(input->data_layout() == DataLayout::NHWC)
    {
        permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
        permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));

        permuted_input   = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW));
        permuted_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW));

        input_to_use   = &permuted_input;
        weights_to_use = &permuted_weights;
    }

    const bool         is_quantized = is_data_type_quantized_asymmetric(input->data_type());
    const bool         append_bias  = (biases != nullptr) && !is_quantized;
    TensorShape        output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
    const size_t       weights_w    = weights_to_use->dimension(0);
    const size_t       weights_h    = weights_to_use->dimension(1);
    const size_t       weights_z    = weights_to_use->dimension(2);
    const unsigned int conv_w       = output_shape[width_idx];
    const unsigned int conv_h       = output_shape[height_idx];
    const size_t       patch_size   = weights_w * weights_h + (append_bias ? 1 : 0);
    const size_t       conv_size    = conv_w * conv_h;

    // Output auto inizialitation if not yet initialized
    auto_init_if_empty(*output_clone, input->clone()->set_tensor_shape(output_shape));
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);

    TensorInfo permuted_output;
    if(input->data_layout() == DataLayout::NHWC)
    {
        permute(output_shape, PermutationVector(1U, 2U, 0U));
        permuted_output = TensorInfo(output_clone->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_data_layout(DataLayout::NCHW));
        output_to_use   = &permuted_output;
    }

    // Im2Col configuration
    TensorShape shape_im2col = input_to_use->tensor_shape();
    shape_im2col.set(0, patch_size);
    shape_im2col.set(1, conv_size);
    shape_im2col.set(2, weights_z);
    TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col).set_data_layout(DataLayout::NCHW));
    ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseIm2ColKernel::validate(input_to_use, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation));

    // Weights reshape configuration
    const TensorShape shape_weights_reshape(patch_size, weights_z);
    TensorInfo        weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape).set_data_layout(DataLayout::NCHW));
    ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseWeightsReshapeKernel::validate(weights_to_use, &weights_reshaped, append_bias ? biases : nullptr));

    // GEMV configuration
    DataType    v2mm_dt        = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();
    TensorShape shape_v2mm_out = input_to_use->tensor_shape();
    shape_v2mm_out.set(0, conv_size * weights_z);
    shape_v2mm_out.set(1, 1);
    shape_v2mm_out.set(2, 1);
    TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out).set_data_layout(DataLayout::NCHW));
    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output));

    TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_to_use->tensor_shape()));
    ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output_to_use, conv_w, conv_h));

    if(is_quantized)
    {
        ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output_to_use));
    }

    // Validate Activation Layer
    if(act_info.enabled())
    {
        ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
    }

    return Status{};
}

void NEDepthwiseConvolutionLayer::run()
{
    prepare();

    if(_is_nhwc)
    {
        _permute_input.run();
    }

    NEScheduler::get().schedule(&_im2col_kernel, Window::DimX);
    NEScheduler::get().schedule(&_v2mm_input_fill_border, Window::DimX);
    NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX);
    NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX);
    if(_is_quantized)
    {
        NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
    }

    if(_is_nhwc)
    {
        _permute_output.run();
    }

    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.run();
    }
}

void NEDepthwiseConvolutionLayer::prepare()
{
    if(!_is_prepared)
    {
        ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

        if(_is_nhwc)
        {
            _permute_weights.run();
        }

        // Run reshape and mark original weights as unused
        _weights_reshaped.allocator()->allocate();
        NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX);
        NEScheduler::get().schedule(&_v2mm_weights_fill_border, Window::DimX);
        _original_weights->mark_as_unused();

        _is_prepared = true;
    }
}
} // namespace arm_compute