aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/GLES_COMPUTE/functions/GCFullyConnectedLayer.cpp
blob: 8f26c620b5266c556184688c638493f11860c5ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/GLES_COMPUTE/functions/GCFullyConnectedLayer.h"

#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
#include "support/ToolchainSupport.h"

#include <algorithm>

using namespace arm_compute;

void GCFullyConnectedLayerReshapeWeights::configure(const IGCTensor *input, IGCTensor *output)
{
    auto k = arm_compute::support::cpp14::make_unique<GCTransposeKernel>();
    k->configure(input, output);
    _kernel = std::move(k);
}

GCFullyConnectedLayer::GCFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
    : _memory_group(std::move(memory_manager)), _weights_manager(std::move(weights_manager)), _im2col_kernel(), _reshape_weights_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(),
      _reshape_weights_output(), _original_weights(nullptr), _are_weights_reshaped(true), _is_fc_after_conv(true), _accumulate_biases(false)
{
}

void GCFullyConnectedLayer::configure_conv_fc(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output)
{
    ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));

    const DataType dt = input->info()->data_type();

    // If the fully connected layer is called after a convolution layer, the input tensor must be linearized

    // Initialize output tensor for im2col
    TensorShape shape_im2col;
    shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2));
    shape_im2col.set(1, input->info()->dimension(3));
    shape_im2col.set(2, input->info()->dimension(4));
    shape_im2col.set(3, input->info()->dimension(5));
    _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt));

    // Configure im2col kernel
    _memory_group.manage(&_im2col_output);
    _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false);

    // Configure matrix multiply kernel
    _mm_kernel.configure(&_im2col_output, weights, output, 1.0f, false);

    // Allocate the output tensor for im2col once all the configure methods have been called
    _im2col_output.allocator()->allocate();
}

void GCFullyConnectedLayer::configure_fc_fc(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output)
{
    ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));

    // Configure matrix multiply kernel
    _mm_kernel.configure(input, weights, output, 1.0f, false);
}

void GCFullyConnectedLayer::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *biases, IGCTensor *output,
                                      FullyConnectedLayerInfo fc_info)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
    ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 2);

    _original_weights     = weights;
    _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
    _is_fc_after_conv     = true;
    _accumulate_biases    = false;

    if(biases != nullptr)
    {
        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);

        _accumulate_biases = true;

        // Configure accumulate biases kernel
        _accumulate_biases_kernel.configure(output, biases);
    }

    // With the Fully Connected layer we can have 4 different cases:
    //  1) Convolution layer -> Fully Connected layer without batches
    //  2) Fully Connected layer -> Fully Connected layer without batches
    //  3) Convolution layer -> Fully Connected layer with batches
    //  4) Fully Connected layer -> Fully Connected layer with batches

    const IGCTensor *weights_to_use = weights;

    if(!_are_weights_reshaped)
    {
        weights_to_use = &_reshape_weights_output;

        // Reshape the weights
        _reshape_weights_kernel.configure(weights, &_reshape_weights_output);
    }

    // Check if we have a fully connected layer with batches
    const bool is_batched_fc_layer = output->info()->dimension(1) > 1;

    if(is_batched_fc_layer)
    {
        _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
                                                                                  input->info()->tensor_shape().cend(),
                                                                                  output->info()->tensor_shape().cbegin() + 1));
    }
    else
    {
        _is_fc_after_conv = input->info()->num_dimensions() > 1;
    }

    if(_is_fc_after_conv)
    {
        // Fully Connected layer after a Convolution Layer without batches
        configure_conv_fc(input, weights_to_use, output);
    }
    else
    {
        // Fully Connected layer after a Fully Connected Layer without batches
        configure_fc_fc(input, weights_to_use, output);
    }

    ARM_COMPUTE_ERROR_ON(fc_info.retain_internal_weights && _reshape_weights_output.gc_buffer() == 0);
    _are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights;
}

void GCFullyConnectedLayer::run()
{
    prepare();

    MemoryGroupResourceScope scope_mg(_memory_group);

    // Linearize input if it comes from a convolutional layer
    if(_is_fc_after_conv)
    {
        GCScheduler::get().dispatch(_im2col_kernel, false);
    }

    if(!_are_weights_reshaped || _is_fc_after_conv)
    {
        GCScheduler::get().memory_barrier();
    }

    // Run matrix multiply
    GCScheduler::get().dispatch(_mm_kernel, !_accumulate_biases);

    // Accumulate biases if provided
    if(_accumulate_biases)
    {
        GCScheduler::get().memory_barrier();

        GCScheduler::get().dispatch(_accumulate_biases_kernel);
    }
}

void GCFullyConnectedLayer::prepare()
{
    // Reshape of the weights (happens only once)
    if(!_are_weights_reshaped)
    {
        ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

        // Run reshape weights kernel and mark weights as unused
        _reshape_weights_output.allocator()->allocate();
        _reshape_weights_kernel.run();

        // Mark original weights tensor as unused
        _original_weights->mark_as_unused();

        _are_weights_reshaped = true;
    }
}