aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CL/functions/CLWinogradConvolutionLayer.cpp
blob: 52973bac78d10e165f1da467c1f448a79f55cc13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 * Copyright (c) 2018-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h"

#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"

using namespace arm_compute;

namespace
{
Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataLayout data_layout)
{
    Size2D output_tile = Size2D{};

    const unsigned int kernel_max_dim = std::max(kernel_dims.width, kernel_dims.height);

    // Check if the input spatial dimensions are smaller than 4
    const bool is_input_lt4_nchw = (input_dims.width <= 4 && input_dims.height <= 4) && (data_layout == DataLayout::NCHW);

    if(kernel_max_dim == 3U)
    {
        if(kernel_dims == Size2D(3U, 3U))
        {
            output_tile = is_input_lt4_nchw ? Size2D(2U, 2U) : Size2D(4U, 4U);
        }
        else if(kernel_dims == Size2D(3U, 1U))
        {
            output_tile = is_input_lt4_nchw ? Size2D(2U, 1U) : Size2D(4U, 1U);
        }
        else
        {
            output_tile = is_input_lt4_nchw ? Size2D(1U, 2U) : Size2D(1U, 4U);
        }
    }
    else if(kernel_max_dim == 5U)
    {
        output_tile = Size2D(kernel_dims.width == 1 ? 1U : 4U,
                             kernel_dims.height == 1 ? 1U : 4U);
    }
    else if(kernel_max_dim == 7U)
    {
        output_tile = Size2D(kernel_dims.width == 1 ? 1U : 2U,
                             kernel_dims.height == 1 ? 1U : 2U);
    }

    return output_tile;
}

bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
{
    // Check if we want to configure a Winograd configuration which requires fast math
    using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;

    std::vector<WinogradConfiguration> fast_math_winograd =
    {
        WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5)),
        WinogradConfiguration(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7))
    };

    auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
                            std::pair<int, int>(kernel_size.width, kernel_size.height));

    return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
}
} // namespace

CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _input0(), _input1(), _batched_mm_output(), _original_weights(nullptr),
      _is_prepared(false)
{
}

void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
                                           bool enable_fast_math)
{
    // Get indices for the width and height
    const size_t idx_width  = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);

    // Input shape, kernel size and output tile
    const Size2D input_dims  = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]);
    const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]);
    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, input->info()->data_layout());

    // Check if the Winograd configuration requires fast math
    if(!enable_fast_math)
    {
        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); //disable winograd for fp16 if fast math is false.
        ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
    }
    const WinogradInfo winograd_info = WinogradInfo(output_tile,
                                                    kernel_size,
                                                    input_dims,
                                                    conv_info,
                                                    input->info()->data_layout());

    _is_prepared      = false;
    _original_weights = weights;

    // Manage intermediate tensors
    _memory_group.manage(&_input0);
    _memory_group.manage(&_batched_mm_output);

    // Do not manage _input1 as it contains the weights

    // Configure input transform
    _input_transform.configure(input, &_input0, winograd_info);

    // Configure filter transform
    _filter_transform.configure(weights, &_input1, winograd_info);

    // Configure batched matrix multiply
    _batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false, GEMMLowpOutputStageInfo(),
                                                                                                 (input->info()->data_type() == DataType::F16)));

    // Configure output transform
    _output_transform.configure(&_batched_mm_output, biases, output, winograd_info, act_info);

    // Allocate temporary tensors
    _input0.allocator()->allocate();
    _batched_mm_output.allocator()->allocate();
}

Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
                                            const ActivationLayerInfo &act_info, bool enable_fast_math)
{
    // Get indeces for the width and height
    const size_t idx_width  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);

    // Input shape, kernel size and output tile
    const Size2D input_dims  = Size2D(input->tensor_shape()[idx_width], input->tensor_shape()[idx_height]);
    const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, input->data_layout());

    // Check if the Winograd configuration requires fast math
    if(!enable_fast_math)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); //disable winograd for fp16 if fast math is false.
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
    }

    const WinogradInfo winograd_info = WinogradInfo(output_tile,
                                                    kernel_size,
                                                    input_dims,
                                                    conv_info,
                                                    input->data_layout());

    // Validate input transform
    const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
    const TensorInfo  input0       = input->clone()->set_tensor_shape(input0_shape);
    ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, winograd_info));

    // Validate filter transform
    const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
    const TensorInfo  input1       = weights->clone()->set_tensor_shape(input1_shape);
    ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));

    // Validate batched matrix multiply
    TensorShape batched_mm_output_shape = input0.tensor_shape();
    batched_mm_output_shape[0]          = input1.tensor_shape()[0];
    const TensorInfo batched_mm_output  = input0.clone()->set_tensor_shape(batched_mm_output_shape);
    ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false,
                                                                                                                     GEMMLowpOutputStageInfo(), (input->data_type() == DataType::F16))));

    // Configure output transform
    ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, winograd_info));

    // Validate Activation Layer
    if(act_info.enabled())
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
    }

    return Status{};
}

void CLWinogradConvolutionLayer::run()
{
    prepare();

    _memory_group.acquire();

    // Run input transform
    _input_transform.run();

    // Run batched matrix multiplication
    _batched_mm.run();

    // Run output transform
    CLScheduler::get().enqueue(_output_transform);

    _memory_group.release();
}

void CLWinogradConvolutionLayer::prepare()
{
    if(!_is_prepared)
    {
        // Run filter transform and mark original weights as unused
        _input1.allocator()->allocate();
        CLScheduler::get().enqueue(_filter_transform, false);
        _original_weights->mark_as_unused();

        // Prepare GEMM and release reshaped weights if marked unused by CLGEMM
        _batched_mm.prepare();
        if(!_input1.is_used())
        {
            _input1.allocator()->free();
        }

        CLScheduler::get().queue().finish();
        _is_prepared = true;
    }
}