aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CL/functions/CLPadLayer.cpp
blob: dba7f23f3b92ef0bb6c36529c92966edec7769fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
 * Copyright (c) 2018-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CL/functions/CLPadLayer.h"

#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"

namespace arm_compute
{
CLPadLayer::CLPadLayer()
    : _copy_kernel(), _mode(), _padding(), _memset_kernel(), _num_dimensions(0), _slice_functions(nullptr), _concat_functions(nullptr), _slice_results(nullptr), _concat_results(nullptr)
{
}

void CLPadLayer::configure_constant_mode(ICLTensor *input, ICLTensor *output, const PaddingList &padding, const PixelValue constant_value)
{
    // Set the pages of the output to the constant_value.
    _memset_kernel.configure(output, constant_value);

    // Fill out padding list with zeroes.
    PaddingList padding_extended = padding;
    for(size_t i = padding.size(); i < TensorShape::num_max_dimensions; i++)
    {
        padding_extended.emplace_back(PaddingInfo{ 0, 0 });
    }

    // Create a window within the output tensor where the input will be copied.
    Window copy_window = Window();
    for(uint32_t i = 0; i < output->info()->num_dimensions(); ++i)
    {
        copy_window.set(i, Window::Dimension(padding_extended[i].first, padding_extended[i].first + input->info()->dimension(i), 1));
    }
    // Copy the input to the output, leaving the padding filled with the constant_value.
    _copy_kernel.configure(input, output, PaddingList(), &copy_window);
}

void CLPadLayer::configure_reflect_symmetric_mode(ICLTensor *input, ICLTensor *output)
{
    int64_t last_padding_dimension = _padding.size() - 1;
    // Reflecting can be performed by effectively unfolding the input as follows:
    // For each dimension starting at DimX:
    //      Create a before and after slice, which values depend on the selected padding mode
    //      Concatenate the before and after padding with the tensor to be padded

    // Two strided slice functions will be required for each dimension padded as well as a
    // concatenate function and the tensors to hold the temporary results.
    _slice_functions  = arm_compute::support::cpp14::make_unique<CLStridedSlice[]>(2 * _num_dimensions);
    _slice_results    = arm_compute::support::cpp14::make_unique<CLTensor[]>(2 * _num_dimensions);
    _concat_functions = arm_compute::support::cpp14::make_unique<CLConcatenateLayer[]>(_num_dimensions);
    _concat_results   = arm_compute::support::cpp14::make_unique<CLTensor[]>(_num_dimensions - 1);
    Coordinates starts_before, ends_before, starts_after, ends_after, strides;
    ICLTensor *prev = input;
    for(uint32_t i = 0; i < _num_dimensions; ++i)
    {
        // Values in strides from the previous dimensions need to be set to 1 to avoid reversing again.
        if(i > 0)
        {
            strides.set(i - 1, 1);
        }

        if(_padding[i].first > 0 || _padding[i].second > 0)
        {
            // Set the starts, ends, and strides values for the current dimension.
            // Due to the bit masks passed to strided slice, the values below the current dimension in
            // starts and ends will be ignored so do not need to be modified.
            if(_mode == PaddingMode::REFLECT)
            {
                starts_before.set(i, _padding[i].first);
                ends_before.set(i, 0);
                starts_after.set(i, input->info()->dimension(i) - 2);
                ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 2);
                strides.set(i, -1);
            }
            else
            {
                starts_before.set(i, _padding[i].first - 1);
                ends_before.set(i, -1);
                starts_after.set(i, input->info()->dimension(i) - 1);
                ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 1);
                strides.set(i, -1);
            }

            // Strided slice wraps negative indexes around to the end of the range,
            // instead this should indicate use of the full range and so the bit mask will be modified.
            const int32_t begin_mask_before = starts_before[i] < 0 ? ~0 : ~(1u << i);
            const int32_t end_mask_before   = ends_before[i] < 0 ? ~0 : ~(1u << i);
            const int32_t begin_mask_after  = starts_after[i] < 0 ? ~0 : ~(1u << i);
            const int32_t end_mask_after    = ends_after[i] < 0 ? ~0 : ~(1u << i);

            // Reflect the input values for the padding before and after the input.
            std::vector<ICLTensor *> concat_vector;
            if(_padding[i].first > 0)
            {
                if(i < prev->info()->num_dimensions())
                {
                    _slice_functions[2 * i].configure(prev, &_slice_results[2 * i], starts_before, ends_before, strides, begin_mask_before, end_mask_before);
                    concat_vector.push_back(&_slice_results[2 * i]);
                }
                else
                {
                    // Performing the slice is unnecessary if the result would simply be a copy of the tensor.
                    concat_vector.push_back(prev);
                }
            }
            concat_vector.push_back(prev);
            if(_padding[i].second > 0)
            {
                if(i < prev->info()->num_dimensions())
                {
                    _slice_functions[2 * i + 1].configure(prev, &_slice_results[2 * i + 1], starts_after, ends_after, strides, begin_mask_after, end_mask_after);
                    concat_vector.push_back(&_slice_results[2 * i + 1]);
                }
                else
                {
                    // Performing the slice is unnecessary if the result would simply be a copy of the tensor.
                    concat_vector.push_back(prev);
                }
            }
            // Concatenate the padding before and after with the input.
            ICLTensor *out = (static_cast<int32_t>(i) == last_padding_dimension) ? output : &_concat_results[i];
            _concat_functions[i].configure(concat_vector, out, i);
            prev = out;
        }
    }
    for(uint32_t i = 0; i < _num_dimensions; ++i)
    {
        if((static_cast<int32_t>(i) != last_padding_dimension))
        {
            _concat_results[i].allocator()->allocate();
        }
        _slice_results[2 * i].allocator()->allocate();
        _slice_results[2 * i + 1].allocator()->allocate();
    }
}

void CLPadLayer::configure(ICLTensor *input, ICLTensor *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode)
{
    ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), output->info(), padding, constant_value, mode));

    _padding = padding;
    _mode    = mode;

    TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->info()->tensor_shape(), _padding);

    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(padded_shape));

    // Find the last dimension requiring padding so that it is known when to write to output and whether any padding is applied.
    int64_t last_padding_dimension = _padding.size() - 1;
    for(; last_padding_dimension >= 0; --last_padding_dimension)
    {
        if(_padding[last_padding_dimension].first > 0 || _padding[last_padding_dimension].second > 0)
        {
            break;
        }
    }
    _num_dimensions = last_padding_dimension + 1;
    if(_num_dimensions > 0)
    {
        switch(_mode)
        {
            case PaddingMode::CONSTANT:
            {
                configure_constant_mode(input, output, padding, constant_value);
                break;
            }
            case PaddingMode::REFLECT:
            case PaddingMode::SYMMETRIC:
            {
                configure_reflect_symmetric_mode(input, output);
                break;
            }
            default:
                ARM_COMPUTE_ERROR("Padding mode not supported.");
        }
    }
    else
    {
        // Copy the input to the whole output if no padding is applied
        _copy_kernel.configure(input, output);
    }
}

Status CLPadLayer::validate(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode)
{
    ARM_COMPUTE_RETURN_ERROR_ON(padding.size() > input->num_dimensions());

    TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->tensor_shape(), padding);

    // Use CLCopyKernel and CLMemsetKernel to validate all padding modes as this includes all of the shape and info validation.
    PaddingList padding_extended = padding;
    for(size_t i = padding.size(); i < TensorShape::num_max_dimensions; i++)
    {
        padding_extended.emplace_back(PaddingInfo{ 0, 0 });
    }

    Window copy_window = Window();
    for(uint32_t i = 0; i < padded_shape.num_dimensions(); ++i)
    {
        copy_window.set(i, Window::Dimension(padding_extended[i].first, padding_extended[i].first + input->dimension(i), 1));
    }
    if(output->total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), padded_shape);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(output, input);
        ARM_COMPUTE_RETURN_ON_ERROR(CLCopyKernel::validate(input, output, PaddingList(), &copy_window));
        ARM_COMPUTE_RETURN_ON_ERROR(CLMemsetKernel::validate(output, constant_value));
    }
    else
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLCopyKernel::validate(input, &input->clone()->set_tensor_shape(padded_shape), PaddingList(), &copy_window));
        ARM_COMPUTE_RETURN_ON_ERROR(CLMemsetKernel::validate(&input->clone()->set_tensor_shape(padded_shape), constant_value));
    }

    switch(mode)
    {
        case PaddingMode::CONSTANT:
        {
            break;
        }
        case PaddingMode::REFLECT:
        case PaddingMode::SYMMETRIC:
        {
            for(uint32_t i = 0; i < padding.size(); ++i)
            {
                if(mode == PaddingMode::REFLECT)
                {
                    ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first >= input->dimension(i));
                    ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second >= input->dimension(i));
                }
                else
                {
                    ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first > input->dimension(i));
                    ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second > input->dimension(i));
                }
            }
            break;
        }
        default:
        {
            ARM_COMPUTE_ERROR("Invalid mode");
        }
    }
    return Status{};
}

void CLPadLayer::run()
{
    if(_num_dimensions > 0)
    {
        switch(_mode)
        {
            case PaddingMode::CONSTANT:
            {
                CLScheduler::get().enqueue(_memset_kernel, false);
                CLScheduler::get().enqueue(_copy_kernel, true);
                break;
            }
            case PaddingMode::REFLECT:
            case PaddingMode::SYMMETRIC:
            {
                for(uint32_t i = 0; i < _num_dimensions; ++i)
                {
                    if(_padding[i].first > 0 || _padding[i].second > 0)
                    {
                        if(_padding[i].first > 0 && _slice_results[2 * i].info()->total_size() > 0)
                        {
                            _slice_functions[2 * i].run();
                        }
                        if(_padding[i].second > 0 && _slice_results[2 * i + 1].info()->total_size() > 0)
                        {
                            _slice_functions[2 * i + 1].run();
                        }
                        CLScheduler::get().sync();
                        _concat_functions[i].run();
                        CLScheduler::get().sync();
                    }
                }
                break;
            }
            default:
                ARM_COMPUTE_ERROR("Padding mode not supported.");
        }
    }
    else
    {
        CLScheduler::get().enqueue(_copy_kernel, true);
    }
}
} // namespace arm_compute